Activity of СО2, N2 Fixation and Denitrification in the Course of Decay of Coarse Woody Debris Decay of Norway Spruce in the South Taiga

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The activity of CO2 efflux, N2 fixation, and denitrification, as well as the physiological state of the community of microorganisms-destructors were assessed depending on the decay stage of the coarse woody debris (CWD) in the incubation experiments with the coarse woody debris of Norway spruce (Picea abies L.) and podzolic soil (Retisol). The coarse woody debris and soil were sampled at the experimental sites of the Central Forest State Reserve (Tver Region, Russia). Maximal CO2 emissions caused by CWD decomposition was associated with the decay stages III and IV. Also, the latter two showed maximal values of such sound indices of microbial activity as substrate induced respiration (SIR, 50 μg С–СО2/(g h)), percentage of easily decomposable С in organic matter (А1, 66%) and metabolic quotient qCO2 (0.78). Unlike the СО2 emission, maximal activity of N2 fixation was at the earlier decay stage II. The values of N2 fixation and denitrification activities indicate a gradual and complicatedly regulated transition process from the properties of bacterial and fungal communities of CDW to those in the soil during stages II, III and IV. The dramatic, more than 3-fold decrease was found only for C : N in CWD during the stages III–IV transition. СО2 emission at the stage V increased dramatically. Nevertheless, the CWD organic matter even at this latest decay stage had lower sustainability than organic matter of podzolic soil.

作者简介

I. Yevdokimov

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ilyaevd@yahoo.com
Russia, 142290, Moscow oblast, Pushchino

N. Kostina

Lomonosov Moscow State University, Faculty of Soil Science

Email: ilyaevd@yahoo.com
Russia, 119991 , Moscow

S. Bykhovets

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences

Email: ilyaevd@yahoo.com
Russia, 142290, Moscow oblast, Pushchino

A. Kurakov

Lomonosov Moscow State University, Biological Faculty

Email: ilyaevd@yahoo.com
Russia, 119991, Moscow

参考

  1. Васенев В.И., Ананьева Н.Д., Иващенко К.В. Влияние поллютантов (тяжелые металлы, дизельное топливо) на дыхательную активность конструктоземов // Экология. 2013. № 6. С. 436–445. https://doi.org/10.7868/S0367059713060115
  2. Евдокимов И.В., Юсупов И.А., Ларионова А.А., Быховец С.С., Глаголев М.В., Шавнин С.А. Тепловое воздействие факела попутного газа на биологическую активность почвы // Почвоведение. 2017. № 12. С. 1485–1493. https://doi.org/10.7868/S0032180X17120073
  3. Заварзин Г.А., Заварзина А.Г. Ксилотрофы и микофильные бактерии при образовании дистрофных вод // Микробиология. 2009. Т. 78. № 5. С. 579–591.
  4. Замолодчиков Д.Г., Каганов В.В., Липка О.Н. Потенциальное поглощение углерода фитомассой древостоя при восстановлении тугайных лесов // Лесоведение. 2020. № 2. С. 115–126. https://doi.org/10.31857/S0024114820020114
  5. Кудеяров В.Н., Заварзин Г.А., Благодатский С.А., Борисов А.В., Воронин П.Ю., Демкин В.А., Демкина Т.С. и др. Пулы и потоки углерода в наземных экосистемах России. М.: Наука, 2007. 315 с.
  6. Кураков А.В., Евдокимов И.В., Максимович С.В., Костина Н.В. Микробное сообщество при разложении валежа ели и его активность в выделении двуокиси углерода, азотфиксации и денитрификации // Проблемы лесной фитопатологии и микологии. Петрозаводск: КарНЦ РАН, 2018. 262 с.
  7. Кураков А.В., Прохоров И.С., Костина Н.В., Махова Е.Г., Садыкова В.С. Стимуляция грибами азотфиксации в дерново-подзолистых почвах // Почвоведение. 2006. № 9. С. 1075–1081.
  8. Кураков А.В., Семенова Т.А. Видовое разнообразие микроскопических грибов в лесных экосистемах южной тайги Европейской части России // Микология и фитопатология. 2016. Т. 50. С. 367–378.
  9. Ларионова А.А., Квиткина А.К., Быховец С.С., Лопес де Гереню В.О., Колягин Ю.Г., Каганов В.В. Влияние азота на минерализацию и гумификацию лесных опадов в модельном эксперименте // Лесоведение. 2017. № 2. С. 128–139.
  10. Степанов А.Л., Лысак Л.В. Методы газовой хроматографии в почвенной микробиологии. М.: МАКС Пресс, 2002. 88 с.
  11. Соколова Т.А., Дронова Т.Я., Толпешта, И.И., Иванова С.Е. Взаимодействие лесных суглинистых подзолистых почв с модельными кислыми осадками и кислотно-основная буферность подзолистых почв. М.: Изд-во Моск. ун-та, 2001. 207 с.
  12. Соколова Т.А., Толпешта И.И., Лысак Л.В., Завгородняя Ю.А., Чалова Т.С., Карпухин М.М., Изосимова Ю.Г. Биологические характеристики и содержание подвижных соединений Fe, Al и Si в ризосфере ели в подзолистой почве // Почвоведение. 2018. № 11. С. 1330–1339. https://doi.org/10.1134/S0032180X18110084
  13. Стороженко В.Г., Шорохова Е.В. Биогеоценотические и ксилолитические параметры устойчивых таежных ельников // Грибные сообщества лесных экосистем. М.–Петрозаводск: Карельский научный центр РАН, 2012. Т. 3. С. 22–40.
  14. Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221. https://doi.org/10.1016/0038-0717(78)90099-8
  15. Beare M.H., Neely C.L., Coleman D.C., Hargrove W.L. A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues // Soil Biol. Biochem. 1990. V. 22. P. 585–594. https://doi.org/10.1016/0038-0717(90)90002-H
  16. Benoist A., Houle D., Bradley R.L. Bellenge J.-P. Evaluation of biological nitrogen fixation in coarse woody debris from Eastern Canadian boreal forests // Soil Bio-l. Biochem. 2022. V. 165. 108531. https://doi.org/10.1016/j.soilbio.2021.108531
  17. Berg B. Decomposition patterns for foliar litter: A theory for influencing factors // Soil Biol. Biochem. 2014. V. 78. P. 222–232. https://doi.org/10.1016/j.soilbio.2014.08.005
  18. Blagodatskaya E.V., Anderson T.H. Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and qCO2 of microbial communities in forest soils // Soil Biol. Biochem. 1998. V. 30. P. 1269–1274. https://doi.org/10.1016/S0038-0717(98)00050-9
  19. Blagodatsky S.A., Heinemeyer O., Richter J. Estimating the active and total soil microbial biomass by kinetic respiration analysis // Biology and Fertility of Soils. 2000. V. 32. P. 73–81. https://doi.org/10.1007/s003740000219
  20. Chen J., Heikkinen J., Hobbie E.A., Rinne-Garmston (Rinne) K.T., Penttila R., Mäkipää R. Strategies of carbon and nitrogen acquisition by saprotrophic and ectomycorrhizal fungi in Finnish boreal Picea abies-dominated forests // Fungal Biology. 2019. V. 123. P. 456–454. https://doi.org/10.1016/j.funbio.2019.03.005
  21. Dossa G.G.O., Yang Y.-Q., Hu W., Paudel E., Schaefer D., Yang Y.-P., Cao K.-F., Xu J.-C., Bushley K.E., Harrison R.D. Fungal succession in decomposing woody debris across a tropical forest disturbance gradient // Soil Biol. Biochem. 2021. V. 155. P. 108142. https://doi.org/10.1016/j.soilbio.2021.108142
  22. Harmon M.E., Franklin J.F., Swanson F.J., Sollins P., Gregory S.V., Lattin J.D., Anderson N.H. et al. Ecology of coarse woody debris in temperate ecosystems // Adv. Ecological Res. 1986. V. 15. P. 133–276. https://doi.org/10.1016/S0065-2504(08)60121-X
  23. Lajtha K. Nutrient retention and loss during ecosystem succession: revisiting a classic model // Ecology. 2020. V. 101. P. e02896. https://doi.org/10.1002/ecy.2896
  24. Leppanen S.M., Salemaa M., Smolander A., Mäkipää R., Tiirola M. Nitrogen fixation and methanotrophy in forest mosses along a N deposition gradient // Environmental and Experimental Botany. 2013. V. 90. P. 62–69. https://doi.org/10.1016/j.envexpbot.2012.12.006
  25. Mäkipää R., Leppänen S.M., Munoz S.S., Smolander A., Tiirola M., Tuomivirta T., Fritze H. Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs // Soil Biol. Biochem. 2018. V. 120. P. 230–232. https://doi.org/10.1016/j.soilbio.2018.02.012
  26. Mukhortova L., Pashenova N., Meteleva M., Krivobokov L., Guggenberger G. Temperature Sensitivity of CO2 and CH4 Fluxes from Coarse Woody Debris in Northern Boreal Forests // Forests. 2021. V. 12. P. 624. https://doi.org/10.3390/f12050624
  27. Prosser J.I., Bohannan B.J.M., Curtis T.P., Ellis R.J., Firestone M.K., Freckleton R.P., Green J.L., Green L.E. et al. The role of ecological theory in microbial ecology // Nature Rev. Microbiol. 2007. V. 5. P. 384–392. https://doi.org/10.1038/nrmicro1643
  28. Salemaa M., Lindroos A.-J., Merilä P., Mäkipää R., Smolander A. N2 fixation associated with the bryophyte layer is suppressed by low levels of nitrogen deposition in boreal forests // Sci. Total Environ. 2019. V. 653. P. 995–1004. https://doi.org/10.1016/j.scitotenv.2018.10.364
  29. Stokland J.N. Volume increment and carbon dynamics in boreal forest when extending the rotation length towards biologically old stands // Forest Ecology and Management. 2016. V. 488. P. 119017. https://doi.org/10.1016/j.foreco.2021.119017
  30. Stokland J.N., Sitonen J., Jonsson B.G. Biodiversity in Dead Wood. Cambridge: Cambridge University Press. 2012. https://doi.org/10.1017/CBO9781139025843
  31. Shorohova E., Kapitsa E. The decomposition rate of non-stem components of coarse woody debris (CWD) in European boreal forests mainly depends on site moisture and tree species // Eur. J. Forest Res. 2016. V. 135. P. 593–606. https://doi.org/10.1007/s10342-016-0957-8
  32. Shorohova E., Kapitsa E., Kuznetsov A., Kuznetsova S., Lopes de Gerenyu V., Kaganov V., Kurganova I. Coarse woody debris density and carbon concentration by decay classes in mixed montane wet tropical forests // Biotropica. 2022. V. 54. P. 635–644. https://doi.org/10.1111/btp.13077
  33. Vek V., Poljanšek I., Humar M., Willför S., Oven P. In vitro inhibition of extractives from knotwood of Scots pine (Pinus sylvestris) and black pine (Pinus nigra) on growth of Schizophyllum commune, Trametes versicolor, Gloeophyllum trabeum and Fibroporia vaillantii // Wood Science and Technology. 2020. V. 54. P. 1645–1662. https://doi.org/10.1007/s00226-020-01229-7
  34. Wu C., Prescott C.E., Shua C., Li B., Zhang Zh., Wang H., Zhang Y., Yuanqiu Liu Y., Wang G.G. Forest Fragmentation Slows the Decomposition of Coarse Woody Debris in a Subtropical Forest // Forest Science. 2021. V. 67. P. 682–693. https://doi.org/10.1093/forsci/fxab035
  35. Wu C., Zhang Z., Shu C., Mo O., Wang H., Kong F., Zhang Y., Wang G.G., Liu Y. The response of coarse woody debris decomposition and microbial community to nutrient additions in a subtropical forest // Forest Ecology and Management. 2020. V. 460. P. 117799. https://doi.org/10.1016/j.foreco.2019.117799

补充文件

附件文件
动作
1. JATS XML
2.

下载 (534KB)

版权所有 © И.В. Евдокимов, Н.В. Костина, С.С. Быховец, А.В. Кураков, 2023

##common.cookie##