Composition of organic matter and biological properties of eroded soils and sediments in a small catchment in the central forest-steppe zone of the Central Russian Upland

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The impact of land use and erosion-deposition processes on some physical, chemical, and biological soil properties in a small agricultural catchment in Kursk oblast is analyzed. Plowed Haplic Chernozems and stratozems (Fluvic Chernic Phaeozems (Loamic, Pachic)), as well as unplowed stratozems of a dry valley bottom have been studied. The proportion of large soil aggregates (clods) >10 mm in soils is high on plowed land and low in the dry valley bottom. Differences in the carbon and nitrogen content and in the C/N ratio have not been detected. The analytical pyrolysis has revealed 26 pyrolysates in the composition of soil organic matter (SOM). The relative abundances of pyrrole, pyridine, toluene, and indan among SOM pyrolysates are higher in plowed soils as compared to the soils at the dry valley bottom. Proportions of furfural and methyl furfural among SOM pyrolysates are higher in soils of the dry valley bottom than in plowed soils. Differences in the content of alkanes and phenol are absent. The biomass of microorganisms is mainly formed by fungi (97–99%), and their abundance is greater in soils of the dry valley bottom than in soils of the plowland. Differences in the respiratory activity of the studied soils have not been revealed. The significant influence of erosion-deposition processes and soil cultivation on the spatial heterogeneity of the SOM composition and microbiological parameters is shown. Plowed soils are characterized by the high relative abundance of nitrogen-containing SOM components, while soils at the dry valley bottom have a relatively high abundance of carbohydrate components of mature SOM. The accumulation of fungal biomass and an increase in the structure coefficient in soils of the dry valley bottom indicate the participation of material redeposited from slopes in soil aggregation.

Sobre autores

Yu. Farkhodov

Dokuchaev Soil Science Institute

Autor responsável pela correspondência
Email: yulian.farkhodov@yandex.ru
ORCID ID: 0000-0002-0210-380X
Rússia, Moscow, 119017

D. Nikitin

Dokuchaev Soil Science Institute

Email: yulian.farkhodov@yandex.ru
Rússia, Moscow, 119017

N. Yaroslavtseva

Dokuchaev Soil Science Institute

Email: yulian.farkhodov@yandex.ru
Rússia, Moscow, 119017

S. Maksimovich

Dokuchaev Soil Science Institute

Email: yulian.farkhodov@yandex.ru
Rússia, Moscow, 119017

A. Ziganshina

Dokuchaev Soil Science Institute

Email: yulian.farkhodov@yandex.ru
Rússia, Moscow, 119017

I. Danilin

Dokuchaev Soil Science Institute

Email: yulian.farkhodov@yandex.ru
Rússia, Moscow, 119017

V. Kholodov

Dokuchaev Soil Science Institute

Email: yulian.farkhodov@yandex.ru
Rússia, Moscow, 119017

M. Semenov

Dokuchaev Soil Science Institute

Email: yulian.farkhodov@yandex.ru
Rússia, Moscow, 119017

A. Zhidkin

Dokuchaev Soil Science Institute

Email: yulian.farkhodov@yandex.ru
Rússia, Moscow, 119017

Bibliografia

  1. Ананьева Н.Д., Сусьян Е.А., Гавриленко Е.Г. Особенности определения углерода микробной биомассы почвы методом субстрат-индуцированного дыхания // Почвоведение. 2011. № 11. С. 1327–1333.
  2. Воробьева Л.А. Теория и практика химического анализа почв. М: ГЕОС, 2006. 400 с.
  3. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986.
  4. Гавриленко Е.Г., Сусьян Е.А., Ананьева Н.Д., Макаров О.А. Пространственное варьирование содержания углерода микробной биомассы и микробного дыхания почв южного Подмосковья // Почвоведение. 2011. № 10. С. 1231–1245.
  5. Добровольская Т.Г., Звягинцев Д.Г., Чернов И.Ю., Головченко А.В., Зенова Г.М., Лысак Л.В., Манучарова Н.А., Марфенина О.Е., Полянская Л.М., Степанов А.Л. Роль микроорганизмов в экологических функциях почв // Почвоведение. 2015. № 9. C. 1087–1087.
  6. Жидкин А.П., Комиссаров М.А., Шамшурина Е.Н., Мищенко А.В. Эрозия почв на Среднерусской возвышенности (обзор) // Почвоведение. 2023. № 2. С. 259–272.
  7. Звягинцев Д.Г. Методы почвенной микробиологии и биохимии. М: Изд-во МГУ, 1991.
  8. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  9. Ковалев И.В., Семенов В.М., Ковалева Н.О., Лебедева Т.Н., Яковлева В.М., Паутова Н.Б. Оценка биогенности и биоактивности агросерых глееватых неосушенных и осушенных почв // Почвоведение. 2021. № 7. С. 827–837.
  10. Корнейкова М.В., Никитин Д.А., Долгих А.В., Сошина А.С. Микобиота почв города Апатиты (Мурманская область) // Микология и фитопатология. 2020. T. 54. № 4. С. 264–277.
  11. Кошовский Т.С., Жидкин A.П., Геннадиев А.Н., Иванова Н.Н. Диагностика, генезис и локализация педоседиментов в пределах мало-го водосбора (Среднерусская возвышенность) // Почвоведение. 2019. № 5. С. 529–543.
  12. Кузьменко Я.В., Лисецкий Ф.Н., Нарожняя А.Г. Применение бассейновой концепции природопользования для почво-водоохранного обустройства агроландшафтов // Известия Самарского научного центра РАН. 2012. T. 14. № 1–9. С. 2432–2435.
  13. Манучарова Н.А., Белова Э.В., Воробьев А.В., Полянская Л.М., Степанов А.Л. Сукцессия хитинолитических микроорганизмов в черноземе // Микробиология. 2005. Т. 74. № 5. С. 693–698.
  14. Манучарова Н.А., Ксенофонтова Н.А., Каримов Т.Д., Власова А.П., Зенова Г.М., Степанов А.Л. Изменение филогенетической структуры метаболически активного прокариотного комплекса почв под влиянием нефтяного загрязнения // Микробиология. 2020. Т. 89. № 2. С. 222–234.
  15. Никитин Д.А., Чернов Т.И., Железова А.Д., Тхакахова А.К., Никитина С.А., Семенов М.В., Ксенофонтова Н.А., Кутовая О.В. Сезонная динамика биомассы микроорганизмов в дерново-подзолистой почве // Почвоведение. 2019. № 11. С. 1356–1364.
  16. Полянская Л.М., Звягинцев Д.Г. Содержание и структура микробной биомассы как показатели экологического состояния почв // Почвоведение. 2005. № 6. С. 706–714.
  17. Полянская Л.М., Приходько В.Е., Ломакин Д.Г., Чернов И.Ю. Численность и биомасса микроорганизмов в древних погребенных и современных черноземах разного землепользования // Почвоведение. 2016. № 10. С. 1191–1204.
  18. Полянская Л.М., Суханова Н.И., Чакмазян К.В., Звягинцев Д.Г. Особенности изменения структуры микробной биомассы почв в условиях залежи // Почвоведение. 2012. № 7. С. 792–792.
  19. Сушко С.В., Ананьева Н.Д., Иващенко К.В., Кудеяров В.Н. Эмиссия СО2, микробная биомасса и базальное дыхание чернозема при различном землепользовании // Почвоведение. 2019. № 9. С. 1081–1091.
  20. Трифонова Т. А. Развитие бассейнового подхода в почвенных и экологических исследованиях // Почвоведение. 2005. № 9. С. 1054–1061.
  21. Холодов В.А., Фарходов Ю.Р., Ярославцева Н.В., Айдиев А.Ю., Лазарев В.И., Ильин Б.С., Иванов А.Л., Куликова Н.А. Термолабильное и термостабильное органическое вещество черноземов разного землепользования // Почвоведение. 2020. № 8. С. 970–982.
  22. Холодов В.А., Фарходов Ю.Р., Ярославцева Н.В., Зиганшина А.Р., Максимович С.В. Неоднородность органического вещества агрегатов типичных черноземов // Почвоведение. 2022. № 7. С. 940–946.
  23. Холодов В.А., Ярославцева Н.В., Зиганшина А.Р., Данченко Н.Н., Данилин И.В., Фарходов Ю.Р., Жидкин А.П. Водоэкстрагируемое органическое вещество почв разной степени смытости и намытости на малом водосборе в центральной лесостепи Среднерусской возвышенности: намытые почвы в днище балки // Почвоведение. 2024. № 7. С. В печати.
  24. Холодов В.А., Ярославцева Н.В., Зиганшина А.Р., Данченко Н.Н., Фарходов Ю.Р., Максимович С.В., Жидкин А.П. Водоэкстрагируемое органическое вещество почв разной степени смытости и намытости на малом водосборе в центральной лесостепи Среднерусской возвышенности: распахиваемые почвы // Почвоведение. 2024. № 6. С. В печати.
  25. Фрунзе Н.И. Суммарная микробная биомасса и метаболическое состояние микроорганизмов в черноземе типичном молдавии // Почвоведение. 2013. № 4. С. 454–454.
  26. Шеин Е.В.Курс физики почв. М.: Изд-во МГУ, 2005. 432 с.
  27. Aksenov A.A., Laponogov I., Zhang Z., Doran S.L.F., Belluomo I., Veselkov D., Bittremieux W. et al. Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data // Nature Biotechnology. 2021. T. 39. № 2. С. 169–173.
  28. Angst G., Mueller K.E., Nierop K.G.J., Simpson M.J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter // Soil Biol. Biochem. 2021. V. 156. P. 108–189.
  29. Awale R., Emeson M.A., Machado S. Soil Organic Carbon Pools as Early Indicators for Soil Organic Matter Stock Changes under Different Tillage Practices in Inland Pacific Northwest // Frontiers in Ecology and Evolution. 2017. V. 5.
  30. Bakermans C., Emili L.A. Chapter 1 – Terrestrial systems of the Arctic as a model for growth and survival at low temperatures / Model Ecosystems in Extreme Environments / Rampelotto P. Academic Press, 2019. P. 1–21.
  31. Banwart S.A., Nikolaidis N.P., Zhu Y.-G., Peacock C.L., Sparks D.L. Soil Functions: Connecting Earth’s Critical Zone // Annual Review of Earth and Planetary Sciences. 2019. V. 47. № 1. P. 333–359.
  32. Blagodatskaya E.V., Blagodatsky S. A., Anderson T. H., Kuzyakov Y. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies // Appl. Soil Ecology. 2007. V. 37. № 1. P. 95–105.
  33. Böhme L., Böhme F. Soil microbiological and biochemical properties affected by plant growth and different long-term fertilisation // European Journal of Soil Biology. 2006. V. 42. № 1. P. 1–12.
  34. Bronick C.J., Lal R. Soil structure and management: a review // Geoderma. 2005. V. 124. № 1-2. P. 3–22.
  35. Buurman P., Jongmans A.G., Nierop K.G.J. Comparison of Michigan and Dutch Podzolized Soils: Organic Matter Characterization by Micromorphology and Pyrolysis-GC/MS // Soil Sci. Soc. Am. J. 2008. V. 72. № 5. P. 1344–1356.
  36. Cheng F., Bayat H., Jena U., Brewer C.E. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review // J. Analytical Appl. Pyrolysis. 2020. V. 147. P. 104780.
  37. Daraghmeh O.A., Jensen J.R., Petersen C.T. Soil structure stability under conventional and reduced tillage in a sandy loam // Geoderma. 2009. V. 150. № 1. P. 64–71.
  38. De la Rosa J. M., Knicker H., Lopez-Capel E., Manning D.A.C., Gonzalez-Perez J.A., Gonzalez-Vila F.J. Direct detection of black carbon in soils by Py-GC/MS, carbon-13 NMR spectroscopy and thermogravimetric techniques // Soil Sci. Soc. of Am. J. 2008. V. 72. № 1. P. 258–267.
  39. de Nijs E.A., Cammeraat E.L.H. The stability and fate of Soil Organic Carbon during the transport phase of soil erosion // Earth-Sci. Rev. 2020. V. 201. P. 103067.
  40. de Vries F.T., Hoffland E., van Eekeren N., Brussaard L., Bloem J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management // Soil Biol. Biochem. 2006. V. 38. № 8. P. 2092–2103.
  41. Dieckow J., Mielniczuk J., González-Vila F.J., Knicker H., Bayer С. No-till cropping systems and N fertilisation influences on organic matter composition of physical fractions of a subtropical Acrisol as assessed by analytical pyrolysis (Py-GC/MS) // Geoderma. 2006. V. 135. P. 260–268.
  42. Doetterl S., Berhe A A., Nadeu E., Wang Z., Sommer M., Fiener P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes // Earth-Sci. Rev. 2016. V. 154. P. 102–122.
  43. Domeignoz-Horta L.A., Shinfuku M., Junier P., Poirier S., Verrecchia E., Sebag D., DeAngelis K.M. Direct evidence for the role of microbial community composition in the formation of soil organic matter composition and persistence // ISME Communications. 2021. V. 1. № 1. P. 64.
  44. Ellerbrock R.H., Gerke H.H., Deumlich D. Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany // Soil Till. Res. 2016. V. 156. P. 209–218.
  45. Finlay R.D., Thorn R.G. The fungi in soil // Modern Soil Microbiology. 2019. P. 65–90.
  46. Geng J., Cheng S., Fang H., Pei J., Xu M., Lu M., Yang Y., Cao Z., Li Y. Different Molecular Characterization of Soil Particulate Fractions under N Deposition in a Subtropical Forest // Forests. 2019. V. 10. № 10. P. 914.
  47. Gleixner G., Poirier N., Bol R., Balesdent J. Molecular dynamics of organic matter in a cultivated soil // Org. Geochem. 2002. V. 33. № 3. P. 357–366.
  48. Granada E., Blasco J., Comellas L., Gassiot M. Pyrolysis—gas chromatographic analyses of organic matter in soils using nitrogen-selective detection // J. Analyt. Appl. Pyrolysis. 1991. V. 19. P. 193–202.
  49. Hao W., Xia B., Xu M. Erosion-deposition positively reconstruct the bacterial community and negatively weaken the fungal community // Catena. 2022. V. 217. P. 106471.
  50. Holz M., Augustin J. Erosion effects on soil carbon and nitrogen dynamics on cultivated slopes: A meta-analysis // Geoderma. 2021. V. 397. P. 115045.
  51. Huang Y., Eglinton G., Van der Hage E. R. E., Boon J. J., Bol R., Ineson P. Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques // Eur. J. Soil Sci. 1998. V. 49. № 1. P. 1–15.
  52. Hurni H. Soil Erosion and Soil Formation in Agricultural Ecosystems: Ethiopia and Northern Thailand // Mountain Research and Development. 1983. V. 3. № 2. P. 131–142.
  53. ISO 10694:1995 – Soil quality Determination of organic and total carbon after dry combustion (elementary analysis). 1995.
  54. Jandl G., Baum C., Heckrath G., Greve M.H., Kanal A., Mander Ü., Maliszewska-Kordybach B., Niedzwiecki J., Eckhardt K.-U., Leinweber P. Erosion Induced Heterogeneity of Soil Organic Matter in Catenae from the Baltic Sea Catchment // Soil Systems. 2019. V. 3. № 2. P. 42.
  55. Jiang G., Nowakowski D.J., Bridgwater A.V. Effect of the Temperature on the Composition of Lignin Pyrolysis Products // Energy Fuels. 2010. V. 24. № 8. P. 4470–4475.
  56. Kaal J., Cortizas A.M., Nierop K.G.J. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon // J. Analyt. Appl. Pyrolysis. 2009. V. 85. № 1-2. P. 408–416.
  57. Li Z., Fang H. Impacts of climate change on water erosion: A review // Earth-Science Reviews. 2016. V. 163. С. 94–117.
  58. Liang C., Kästner M., Joergensen R.G. Microbial necromass on the rise: The growing focus on its role in soil organic matter development // Soil Biol. Biochem. 2020. V. 150. P. 108000.
  59. Liu K., Li T., Duan X., Zhang S., Chen M., Hou H., Wang Z., Yu A., Chen D., Zhang X., Hu J., Dong Y., Liu D., Che R. The degradation of subalpine meadows significantly changed the soil microbiome // Agriculture, Ecosystems Environment. 2023. V. 349. P. 108470.
  60. Mu W., Ben H., Ragauskas A., Deng Y. Lignin Pyrolysis Components and Upgrading—Technology Review // BioEnergy Res. 2013. V. 6. № 4. P. 1183–1204.
  61. Nierop K.G.J. Origin of aliphatic compounds in a forest soil // Org. Geochem. 1998. V. 29. № 4. P. 1009–1016.
  62. Oades J.M. The role of biology in the formation, stabilization and degradation of soil structure // Soil Structure/Soil Biota Interrelationships / Brussaard L., Kooistra M. J. Amsterdam: Elsevier, 1993. P. 377–400.
  63. Ostrowska A., Porębska G. Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils // Ecological Indicators. 2015. V. 49. P. 104–109.
  64. Pastor A., Freixa A., Skovsholt L.J., Wu N., Romaní A.M., Riis T. Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls // Microbial Ecology. 2019. V. 78. № 3. – P. 539–554.
  65. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https:// www.R-project.org/
  66. Ren F., Sun N., Xu M., Zhang X., Wu L., Xu M. Changes in soil microbial biomass with manure application in cropping systems: A meta-analysis // Soil Till. Res. 2019. V. 194. P. 104291.
  67. Ritz K., Young I.M. Interactions between soil structure and fungi // Mycologist. 2004. V. 18. № 2. P. 52–59.
  68. Saiz-Jimenez C., De Leeuw J.W. Chemical characterization of soil organic matter fractions by analytical pyrolysis-gas chromatography-mass spectrometry // J. Analyt. Appl. Pyrolysis.
  69. Schwalb S.A., Li S., Hemkemeyer M., Heinze S., Joergensen R.G., Mayer J., Mäder P., Wichern F. Long-term differences in fertilisation type change the bacteria:archaea:fungi ratios and reveal a heterogeneous response of the soil microbial ionome in a Haplic Luvisol // Soil Biol. Biochem. 2023. V. 177. P. 108892.
  70. Singh P., Benbi D.K. Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas // Catena. 2018. V. 166. P. 171–180.
  71. Sollins P., Homann P., Caldwell B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls // Geoderma. 1996. V. 74. № 1–2. P. 65–105.
  72. Stepanauskas R., Fergusson E.A., Brown J., Poulton N.J., Tupper B., Labonté J.M., Becraft E.D. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles // Nature Commun. 2017. V. 8. № 1. P. 84.
  73. Suleymanov A., Gabbasova I., Suleymanov R., Abakumov E., Polyakov V., Liebelt P. Mapping soil organic carbon under erosion processes using remote sensing // Hungarian Geographical Bull. 2021. V. 70. № 1. P. 49–64.
  74. Sun B., Roberts D.M., Dennis P.G., Caul S., Daniell T.J., Hallett P.D., Hopkins D.W. Microbial properties and nitrogen contents of arable soils under different tillage regimes // Soil Use and Management. 2014. V. 30. № 1. P. 152–159. https://doi.org/10.1111/sum.12089
  75. Tao F., Huang Y., Hungate B.A., Manzoni S., Frey S.D., Schmidt M.W.I., Reichstein M. et al. Microbial carbon use efficiency promotes global soil carbon storage // Nature. 2023. V. 618. № 7967. P. 981–985.
  76. Tedersoo L., Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes // Biological Rev. 2019. V. 94. № 5. P. 1857–1880.
  77. von Lützow M., Kögel-Knabner I., Ludwig B., Matzner E., Flessa H., Ekschmitt K., Guggenberger G., Marschner B., Kalbitz K. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model // J. Plant Nutrition Soil Sci. 2008. V. 171. № 1. P. 111–124.
  78. Wang B., An S., Liang C., Liu Y., Kuzyakov Y. Microbial necromass as the source of soil organic carbon in global ecosystems // Soil Biol. Biochem. 2021. V. 162. P. 108422.
  79. Wang X., Cammeraat E.L.H., Cerli C., Kalbitz K. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition // Soil Biol. Biochem. 2014. V. 72. P. 55–65.
  80. IUSS Working Group WRB. 2014. World reference base for soil resources 2014, International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  81. Yang S., Wu H., Wang Z., Semenov M.V., Ye J., Yin L., Wang X., Kravchenko I., Semenov V., Kuzyakov Y., Jiang Y., Li H. Linkages between the temperature sensitivity of soil respiration and microbial life strategy are dependent on sampling season // Soil Biol. Biochem. 2022. V. 172. P. 108758.
  82. Yang Y.-S., Chen G.-S., Guo J.-F., Xie J.-S., Wang X.-G. Soil respiration and carbon balance in a subtropical native forest and two managed plantations // Plant Ecology. 2007. V. 193. № 1. P. 71–84.
  83. Zhang R., Rong L., Zhang L. Soil nutrient variability mediates the effects of erosion on soil microbial communities: results from a modified topsoil removal method in an agricultural field in Yunnan plateau, China // Environ. Sci. Poll. Res. 2022. V. 29. № 3. P. 3659–3671.
  84. Zhang S., Fan W., Li Y., Yi Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed // Sci. Total Environ. 2017. V. 574. P. 34–45.
  85. Zhao C., Jiang E., Chen A. Volatile production from pyrolysis of cellulose, hemicellulose and lignin // J. Energy Institute. 2017. V. 90. № 6. P. 902–913.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Additional material
Baixar (89KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».