Microbiological Parameters of Sod-Podzolic Soil and Rhizosphere in a Half-Century Field Experiment with Different Fertilizer Systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The regular application of mineral and organic fertilizers is one of the essential components of the agricultural intensification. The applied fertilizers lead to artificial enrichment of the soil environment with readily available substrates and biophilic elements, which can have a significant impact on the soil and rhizosphere microbiome. The aim of the study was to investigate the effect of different fertilizer systems on the quantitative parameters of various microbial groups in soddy-podzolic soil (Umbric Albic Retisol) and the rhizosphere of potatoes and barley. The study was carried out on a long-term field experiment, in which mineral (NPK), organic (manure) and mixed (NPK + manure) fertilizer systems have been applied since 1968. The application of organic fertilizers increased the microbial biomass carbon (Cmic) in the bulk soil and the rhizosphere by 25–100% compared to the soil without fertilizers, while the use of mineral fertilizers, on the contrary, decreased it by 10–30%. Basal respiration and respiratory coefficient (qСО2) increased in the row: without fertilizers < NPK < NPK + manure < manure. The gene copies number of bacteria, archaea, and fungi significantly increased (1.5–2.5 times) under organic fertilizers and decreased (2–2.5 times) under NPK. The varied from 32 to 100 and from 0.10 to 0.92 by the luminescent microscopy and quantitative PCR, respectively. The lowest fungi/bacteria ratios were revealed for variants with NPK, and the highest fungi/bacteria ratios were in variants with manure. Thus, the applied doses of mineral fertilizers must be compensated by the introduction of fresh organic matter in order to maintain the stability of the soil-microbe-plant system.

Sobre autores

M. Semenov

Dokuchaev Soil Science Institute

Autor responsável pela correspondência
Email: mikhail.v.semenov@gmail.com
Russia, 119017, Moscow

N. Ksenofontova

Dokuchaev Soil Science Institute

Email: mikhail.v.semenov@gmail.com
Russia, 119017, Moscow

D. Nikitin

Dokuchaev Soil Science Institute

Email: mikhail.v.semenov@gmail.com
Russia, 119017, Moscow

A. Tkhakakhova

Dokuchaev Soil Science Institute

Email: mikhail.v.semenov@gmail.com
Russia, 119017, Moscow

S. Lukin

All-Russian Research Institute of Organic Fertilizers and Peat

Email: mikhail.v.semenov@gmail.com
Russia, 601390, Vyatkino

Bibliografia

  1. Ананьева Н.Д., Сусьян Е.А., Гавриленко Е.Г. Особенности определения углерода микробной биомассы почвы методом субстрат-индуцированного дыхания // Почвоведение. 2011. № 11. С. 1327–1333.
  2. Ананьева Н.Д., Полянская Л.М., Стольникова Е.В., Звягинцев Д.Г. Соотношение биомассы грибов и бактерий в профиле лесных почв. Известия Российской академии наук. Серия биологическая // 2010. № 3. С. 308–317.
  3. Благодатская Е.В., Семенов М.В., Якушев А.В. Активность и биомасса почвенных микроорганизмов в изменяющихся условиях окружающей среды. М.: Товарищество научных изданий КМК. 2016. 243 с.
  4. Евдокимов И.В. Динамика ризосферного эффекта в почве // Почвоведение. 2013. № 6. С. 715–724. https://doi.org/10.7868/S0032180X13060026
  5. Когут Б.М., Яшин М.А., Семенов В.М., Авдеева Т.Н., Маркина Л.Г., Лукин С.М., Тарасов С.И. Распределение трансформированного органического вещества в структурных отдельностях дерново-подзолистой супесчаной почвы // Почвоведение. 2016. № 1. С. 52–52. https://doi.org/10.7868/S0032180X1601007X
  6. Кудеяров В.Н., Семенов В.М. Проблемы агрохимии и современное состояние химизации сельскохозяйственного производства в Российской Федерации // Агрохимия. 2014. № 10. С. 3–17.
  7. Лукин С.М., Золкина Е.И., Марчук Е.В. Влияние длительного применения удобрений на продуктивность севооборота, содержание и качественный состав органического вещества почвы // Плодородие. 2021. Т. 3. № 120. С. 93–98. https://doi.org/10.25680/S19948603.2021.120.18
  8. Полянская Л.М., Лукин С.М., Звягинцев Д.Г. Изменение состава микробной биомассы при окультуривании // Почвоведение. 1997. № 2. С. 206–212.
  9. Семенов В.М., Лебедева Т.Н., Зинякова Н.Б., Соколов Д.А., Семенов М.В. Эвтрофикация пахотной почвы: сравнительное влияние минеральной и органической систем удобрения // Почвоведение. 2023. № 1. С. 58–73. https://doi.org/10.31857/S0032180X22600676
  10. Семенов М.В., Никитин Д.А., Степанов А.Л., Семенов В.М. Структура бактериальных и грибных сообществ ризосферного и внекорневого локусов серой лесной почвы // Почвоведение. 2019. № 3. С. 355–369. https://doi.org/10.1134/S0032180X19010131
  11. Семенов М.В. Метабаркодинг и метагеномика в почвенно-экологических исследованиях: успехи, проблемы и возможности // Журн. общей биол. 2019. Т. 80. № 6. С. 403–417. https://doi.org/10.1134/S004445961906006X
  12. Ai C., Liang G., Sun J., Wang X., He P., Zhou W., He X. Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils // Soil Biol. Biochem. 2015. V. 80. P. 70–78. https://doi.org/10.1016/j.soilbio.2014.09.028
  13. Ashraf M.N., Hu C., Wu L., Duan Y., Zhang W., Aziz T., Cai A., Abrar M.M., Xu M. Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization // J. Soils Sediments. 2020. V. 20. P. 3103–3113. https://doi.org/10.1007/s11368-020-02642-y
  14. Bailey V.L., Smith J.L., Bolton H., Jr. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration // Soil Biol. Biochem. 2002. V. 34. P. 997–1007. https://doi.org/10.1016/S0038-0717(02)00033-0
  15. Bebber D.P., Richards. V.R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity // Appl. Soil Ecol. 2022. V. 175. P. 104450. https://doi.org/10.1016/j.apsoil.2022.104450
  16. Berendsen R.L., Pieterse C.M., Bakker P.A. The rhizosphere microbiome and plant health // Trends in plant science. 2012. V. 17. P. 478–486. https://doi.org/10.1016/j.tplants.2012.04.001
  17. Brar B.S., Singh J., Singh G., Kaur G. Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation // Agronomy. 2015. V. 5. P. 220–238. https://doi.org/10.3390/agronomy5020220
  18. Carvalheiro L.G., Biesmeijer J.C., Franzén M., Aguirre-Gutiérrez J., Garibaldi L.A., Helm A., Michez D., Pöyry J., Reemer M., Schweiger O., Leon van den B., WallisDeVries M.F., Kunin W.E. Soil eutrophication shaped the composition of pollinator assemblages during the past century // Ecography. 2020. V. 43. P. 209–221. https://doi.org/10.1111/ecog.04656
  19. Chenu C., Angers D.A., Barré P., Derrien D., Arrouays D., Balesdent J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential Innovations // Soil Tillage Res. 2019. V. 188. P. 41–52. https://doi.org/10.1016/j.still.2018.04.011
  20. Dang P., Li C., Lu C., Zhang M., Huang T., Wan C., Wang H., Chen Y., Qin X., Liao Y., Siddique K.H.M. Effect of fertilizer management on the soil bacterial community in agroecosystems across the globe // Agriculture, Ecosystems and Environment. 2022. V. 326. P. 107795. https://doi.org/10.1016/j.agee.2021.107795
  21. Diacono M., Montemurro F. Long-term effects of organic amendments on soil fertility. A review // Agronomy for Sustain. Development. 2010. V. 30. P. 401–422. https://doi.org/10.1007/978-94-007-0394-0_34
  22. Dincă L.C., Grenni P., Onet C., Onet A. Fertilization and soil microbial community: a review // Appl. Sci. 2022. V. 12. P. 1198. https://doi.org/10.3390/app12031198
  23. Ding J., Jiang X., Guan D., Zhao B., Ma M., Zhou B., Cao F., Yang X., Li L., Li J. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols // Appl. Soil Ecol. 2017. V. 111. P. 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003
  24. Dong W.Y., Zhang X.Y., Dai X.Q., Fu X.L., Yang F.T., Liu X.Y., Schaeffer S. Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China // Appl. Soil Ecol. 2014. V.84. P. 140–147. https://doi.org/10.1016/j.apsoil.2014.06.007
  25. Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome // Nature Rev. Microbiol. 2017. V. 15. P. 579–590. https://doi.org/10.1038/nrmicro.2017.87
  26. Ge G., Li Z., Fan F., Chu G., Hou Z., Liang Y. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers // Plant and Soil. 2010. V. 326. P. 31–44. https://doi.org/10.1007/s11104-009-0186-8
  27. Ge Y., Zhang J.B., Zhang L.M., Yang M., He J.Z. Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China // J. Soils Sediments. 2008. V. 8. P. 43–50. https://doi.org/10.1065/jss2008.01.270
  28. Geisseler D., Scow K.M. Long-term effects of mineral fertilizers on soil microorganisms – A review // Soil Biol. Biochem. 2014. V. 75. P. 54–63. https://doi.org/10.1016/j.soilbio.2014.03.023
  29. Guo Z. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystems // Appl. Soil Ecol. 2020. V. 149. P. 103510. https://doi.org/10.1016/j.apsoil.2020.103510
  30. Hartmann M., Frey B., Mayer J., Mäder P., Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming // ISME J. 2015. V. 9. P. 1177–1194. https://doi.org/10.1038/ismej.2014.210
  31. Hu J., Lin X., Wang J., Dai J., Chen R., Zhang J., Wong M.H. Microbial functional diversity, metabolic quotient, and invertase activity of a sandy loam soil as affected by long-term application of organic amendment and mineral fertilizer // J. Soils Sediments. 2011. V. 11. P. 271–280. https://doi.org/10.1007/s11368-010-0308-1
  32. Huang R., McGrath S.P., Hirsch P.R., Clark I.M., Storkey J., Wu L., Zhou J., Liang Y. Plant–microbe networks in soil are weakened by century-long use of inorganic fertilizers // Microb. Biotechnol. 2019. V. 12. P. 1464–1475. https://doi.org/10.1111/1751-7915.13487
  33. Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: concept & review // Soil Biol. Biochem. 2015. V. 83. P. 184–199. https://doi.org/10.1016/j.soilbio.2015.01.025
  34. Lauber C.L., Hamady M., Knight R., Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale // Appl. Environ. Microbiol. 2009. V. 75(15). P. 5111–5120. https://doi.org/10.1128/AEM.00335-09
  35. Lazcano C., Gómez–Brandón M., Revilla P., Domínguez J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function // Biology Fertility Soils. 2013. V. 49. P. 723–733. https://doi.org/10.1007/s00374-012-0761-7
  36. Liu L., Li C., Zhu S., Xu Y., Li H., Zheng X., Shi R. Combined application of organic and inorganic nitrogen fertilizers affects soil prokaryotic communities compositions // Agronomy.2020. V. 10. P. 132. https://doi.org/10.3390/agronomy10010132
  37. Liu S., Wang J., Pu S., Blagodatskaya E., Kuzyakov Y., Razavi B. Impact of manure on soil biochemical properties: a global synthesis // Sci. Total Environ. 2020. P. 141003. https://doi.org/10.1016/j.scitotenv.2020.141003
  38. Luan H., Gao W., Huang S., Tang J., Li M., Zhang H., Masiliūnas D. 2020. Substitution of manure for chemical fertilizer affects soil microbial community diversity structure and function in greenhouse vegetable production systems // PLoS One. V. 15. P. e0214041. https://doi.org/10.1371/journal.pone.0214041
  39. Ma Q., Wen, Y., Wang D., Sun X., Hill P.W., Macdonald A., Chadwick D.R., Wu L., Jones D.L. Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition // Soil Biol. Biochem. 2020. V. 144. P. 107760. https://doi.org/10.1016/j.soilbio.2020.107760
  40. Malik A.A., Chowdhury S., Schlager V., Oliver A., Puissant J., Vazquez P.G., Jehmlich N., Bergen M., Griffiths R.I., Gleixner G. Gleixner G. Soil fungal: bacterial ratios are linked to altered carbon cycling // Frontiers in Microbiology. 2016. V. 7. P. 1247. https://doi.org/10.3389/fmicb.2016.01247
  41. Mendes R., Garbeva P., Raaijmakers J.M. The rhizosphere microbiome: significance of plant beneficial plant pathogenic and human pathogenic microorganisms // FEMS Microbiol. Rev. 2013. V. 37. P. 634–663. https://doi.org/10.1111/1574-6976.12028
  42. Pöyry J., Carvalheiro L.G., Heikkinen R.K., Kühn I., Kuussaari M., Schweiger O., van Bodegom P.M., Valtonen A, Franzén M. The effects of soil eutrophication propagate to higher trophic levels // Global Ecol. Biogeography. 2017. V. 26. P. 18–30. https://doi.org/10.1111/geb.12521
  43. Ramirez K.S., Lauber C.L., Knight R., Bradford M.A., Fierer N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems // Ecology. 2010. V. 91. P. 3463–3470. https://doi.org/10.1890/10-0426.1
  44. Rousk J., Bååth E., Brookes P.C., Lauber C.L., Lozupone C., Caporaso J.G., et al. Soil bacterial and fungal communities across a pH gradient in an arable soil // ISME J. 2010. V. 4. P. 1340–1351. https://doi.org/10.1038/ismej.2010.58
  45. Semenov M.V., Krasnov G.S., Semenov V.M., van Bruggen. A.H. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems // Appl. Soil Ecol. 2020. V. 154. P. 103641. https://doi.org/10.1016/j.apsoil.2020.103641
  46. Semenov M.V., Krasnov G.S., Semenov V.M., Ksenofontova N., Zinyakova N.B., van Bruggen A.H. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota? // J. Environ. Management. 2021. V. 294. P. 113018. https://doi.org/10.1016/j.jenvman.2021.113018
  47. Semenov M.V., Krasnov G.S., Semenov V.M., van Bruggen A. Mineral and Organic Fertilizers Distinctly Affect Fungal Communities in the Crop Rhizosphere // J. Fungi. 2022. V. 8. P. 251. https://doi.org/10.3390/jof8030251
  48. Six J., Frey S.D., Thiet R.K., Batten K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems // Soil Sci. Soc. Am. J. 2006. V. 70. P. 555–569. https://doi.org/10.2136/sssaj2004.0347
  49. Soares M., Rousk J. Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry // Soil Biol. Biochem. 2019. V. 131. P. 195–205. https://doi.org/10.1016/j.soilbio.2019.01.010
  50. Toljander J.F., Santos-González J.C.,Tehler A., Finlay R.D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial // FEMS Microbiol. Ecol. 2008. V. 65. P. 323–338. https://doi.org// j.1574-6941.2008.00512.xhttps://doi.org/10.1111/j.1574-6941.2008.00512.x10.1111
  51. Valentine D.L. Adaptations to energy stress dictate the ecology and evolution of the Archaea // Nature Rev. Microbiol. 2007. V. 5. P. 316–323. https://doi.org/10.1038/nrmicro1619
  52. van Overbeek L., Van Elsas J.D. Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.) // FEMS Microbiol. Ecol. 2008. V. 64. P. 283–296. https://doi.org/ 6941.2008.00469.xhttps://doi.org/10.1111/j.1574-6941.2008.00469.x10.1111/j.1574
  53. Wang L., Yang F.E.Y., Yuan J., Raza W., Huang Q., Shen Q. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil // Frontiers in Microbiology. 2016. V. 7. P. 1893. https://doi.org/10.3389/fmicb.2016.01893
  54. Wu J., Sha C., Wang M., Ye C., Li P., Huang S. Effect of organic fertilizer on soil bacteria in maize fields // Land. 2021. V. 10. P. 328. https://doi.org/10.3390/land10030328
  55. Xiang X., Liu J., Zhang J., Li D., Xu C., Kuzyakov Y. Divergence in fungal abundance and community structure between soils under long-term mineral and organic fertilization // Soil Till. Res. 2020. V. 196. P. 104491. https://doi.org/10.1016/j.still.2019.104491
  56. Zhang X., Dong, W., Dai X., Schaeffer S., Yang F., Radosevich M., Xu L., Liu X., Sun X. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer // Sci. Total Environ. 2015. V. 536. P. 59–67. https://doi.org/10.1016/j.scitotenv.2015.07.043
  57. Zhou Z., Wang C., Luo Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality // Nature Commun. 2020. V. 11. P. 1–10. https://doi.org/10.1038/s41467-020-16881-7

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (307KB)
3.

Baixar (180KB)
4.

Baixar (158KB)
5.

Baixar (195KB)
6.

Baixar (451KB)
7.

Baixar (249KB)

Declaração de direitos autorais © М.В. Семенов, Н.А. Ксенофонтова, Д.А. Никитин, А.К. Тхакахова, С.М. Лукин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies