Investigation of the Microbial Communities of Bentonites from Two Different Repositories under Different Temperature of Incubation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Bentonite clays have a large specific surface area and a large Vume of pore space, which determines their high sorption capacity and allows them to be used as one of the barriers in the construction of deep geological repositories (DGR). It is expected that DGR will function for thousands of years, so the problem of forecasting changes that may occur during this time is relevant. During the functioning of DGR, bentonites can change their properties due to microbiological effects. In this work was analyzed the microbial community structure of two bentonites from 10th Khutor and Taganskoye disposal at different temperatures (25 and 60°C) of incubation. In bentonite from the 10th Khutor deposit, 10 phyla and 92 genera of bacteria were identified during incubation at 60°С, while 12 phyla and 94 genera were identified during incubation at 25°С. In bentonite from the Taganskoye deposit, 14 phyla and 87 genera were identified during incubation at 60°С, and 15 phyla and 123 genera were identified during incubation at 25°С. Samples were dominated with bacteria of Proteobacteria and Firmicutes phyla. It was concluded that is the main factor influencing the formation of the microbial in the studied bentonites community is temperature, and not the chemical and mineral composition of examined bentonites.

Негізгі сөздер

Авторлар туралы

D. Kosheleva

Lomonosov Moscow State University, Soil Science Faculty

Хат алмасуға жауапты Автор.
Email: koshadasheleva@gmail.com
Russia, 119991 , Moscow

V. Cheptsov

Lomonosov Moscow State University, Soil Science Faculty

Email: koshadasheleva@gmail.com
Russia, 119991 , Moscow

A. Stepanov

Lomonosov Moscow State University, Soil Science Faculty

Email: koshadasheleva@gmail.com
Russia, 119991 , Moscow

I. Tolpeshta

Lomonosov Moscow State University, Soil Science Faculty

Email: koshadasheleva@gmail.com
Russia, 119991 , Moscow

V. Krupskaya

Lomonosov Moscow State University, Soil Science Faculty; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Science

Email: koshadasheleva@gmail.com
Russia, 119991 , Moscow; Russia, 119017, Moscow

Әдебиет тізімі

  1. Belousov P.E., Krupskaya V.V., Zakusin S.V., Zhigarev V.V. bentonite clays from 10th khutor deposite: features of genesis, composition and adsorption properties // RUDN J. Engineering Researches. 2017. V. 18. № 1. P. 135–143. https://doi.org/10.22363/2312-8143-2017-18-1-135-143
  2. Belousov P.E., Krupskaya V.V. Bentonite clays of Russia and neighboring countries // Georesursy. 2019. V. 21. № 3. P. 79–90. https://doi.org/10.18599/grs.2019.3.79-90
  3. Bucher F., Müller–Vonmoos M. Bentonite as a containment barrier for the disposal of highly radioactive wastes // Appl. Clay Sci. 1989. V. 4. № 2. P. 157–177. https://doi.org/10.1016/0169-1317(89)90006-9
  4. Delage P., Cui Y.J., Tang A.M. Clays in radioactive waste disposal // J. Rock Mechanics Geotechnical Engineer. 2010. V. 2. № 2. P. 111–123. https://doi.org/10.3724/SP.J.1235.2010.00111
  5. Efimova D., Tyakht A., Popenko A., Vasilyev A., Altukhov I., Dovidchenko N., Odintsova V. et al. Knomics-Biota – a system for exploratory analysis of human gut microbiota data // BioData Min. 2018. V. 11. № 1. P. 25. https://doi.org/10.1186/s13040-018-0187-3
  6. Esnault L., Jullien M., Mustin C., Bildstein O., Libert M. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers // Phys. Chem. Earth, Parts A/B/C. 2011. V. 36. № 17–18. P. 1624–1629. https://doi.org/10.1016/j.pce.2011.10.018
  7. Fardeau M.-L., Barsotti V., Cayol J.-L., Guasco S., Michotey V., Joseph M., Bonin P. et al. Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the Symbiobacterium branch within the Firmicutes // Extremophiles. 2010. V. 14. № 3. P. 241–247. https://doi.org/10.1007/s00792-010-0302-y
  8. Grigoryan A.A., Jalique D.R., Medihala P., Stroes-Gascoyne S., Wolfaardt G.M., McKelvie J., Korber D.R. Bacterial diversity and production of sulfide in microcosms containing uncompacted bentonites // Heliyon. 2018. V. 4. № 8. P. e00722. https://doi.org/10.1016/j.heliyon.2018.e00722
  9. Hallbeck L., Pedersen K. Characterization of microbial processes in deep aquifers of the Fennoscandian Shield // Appl. Geochem. 2008. V. 23. № 7. P. 1796–1819. https://doi.org/10.1016/j.apgeochem.2008.02.012
  10. Haynes H.M., Pearce C.I., Boothman C., Lloyd J.R. Response of bentonite microbial communities to stresses relevant to geodisposal of radioactive waste // Chem. Geol. 2018. V. 501. P. 58–67. https://doi.org/10.1016/j.chemgeo.2018.10.004
  11. Hugerth L.W., Wefer H.A., Lundin S., Jakobsson H.E., Lindberg M., Rodin S., Engstrand L. et al. DegePrime, a Program for Degenerate Primer Design for Broad-Taxonomic-Range PCR in Microbial Ecology Studies // Appl. Environ. Microbiol / Ed. Löffler F.E. 2014. V. 80. № 16. P. 5116–5123. https://doi.org/10.1128/AEM.01403-14
  12. Kale R.C., Kapil B., Ravi K. Response of compacted bentonite to hyperalkalinity and thermal history // Sci. Rep. 2021. V. 11. № 1. P. 15483. https://doi.org/10.1038/s41598-021-95023-5
  13. Kim J.-S., Kwon S.-K., Sanchez M., Cho G.-C. Geological storage of high-level nuclear waste // KSCE J. Civil Engineering. 2011. V. 15. № 4. P. 721–737. https://doi.org/10.1007/s12205-011-0012-8
  14. Krupskaya V.V., Zakusin S.V., Tyupina E.A., Dorzhieva O.V., Chernov M.S., Bychkova Ya.V. Transformation of the montmorillonite structure and its adsorption properties due to the thermochemical treatment // Geochem. Int. 2019. T. 57. № 3. P. 314–330.https://doi.org/10.1134/S0016702919030066
  15. Liu H., Dang X., Zhang H., Dong J., Zhang Z., Wang C., Zhang R. et al. Microbial diversity in bentonite, a potential buffer material for deep geological disposal of radioactive waste // IOP Conf Ser. Earth Environ. Sci. 2019. V. 227. № 2. P. 022010. https://doi.org/10.1088/1755-1315/227/2/022010
  16. Lopez–Fernandez M., Cherkouk A., Vilchez–Vargas R., Jauregui R., Pieper D., Boon N., Sanchez–Castro I. et al. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes // Microbiol. Ecol. 2015. V. 70. № 4. P. 922–935. https://doi.org/10.1007/s00248-015-0630-7
  17. Meleshyn A. Microbial processes relevant for the long-term performance of high-level radioactive waste repositories in clays // Geological Society, London, Special Publications. 2014. V. 400. № 1. P. 179–194. https://doi.org/10.1144/SP400.6
  18. Meleshyn A.Yu., Zakusin S.V., Krupskaya V.V. Swelling Pressure and Permeability of Compacted Bentonite from 10th Khutor Deposit (Russia) // Minerals. 2021. V. 11. № 7. P. 742. https://doi.org/10.3390/min11070742
  19. Merkel A.Yu., Tarnovetskii I.Yu., Podosokorskaya O.A., Toshchakov S.V. Analysis of 16S rRNA Primer Systems for Profiling of Thermophilic Microbial Communities // Microbiology (N.Y.). 2019. V. 88. № 6. P. 671–680. https://doi.org/10.1134/S0026261719060110
  20. Moreno J., López–González J.A., Arcos-Nievas M.A., Suárez-Estrella F., Jurado M.M., Estrella-González M.J., López M.J. Revisiting the succession of microbial populations throughout composting: A matter of thermotolerance // Sci. Total Environ. 2021. V. 773. P. 145587. https://doi.org/10.1016/j.scitotenv.2021.145587
  21. Nandakumar R., Shahjahan A.K.M., Yuan X.L., Dickstein E.R., Groth D.E., Clark C.A., Cartwright R.D. et al. Burkholderia glumae and B. gladioli Cause Bacterial Panicle Blight in Rice in the Southern United States // Plant Dis. 2009. V. 93. № 9. P. 896–905. https://doi.org/10.1094/PDIS-93-9-0896
  22. Nicholson W.L., Munakata N., Horneck G., Melosh H.J., Setlow P. Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments // Microbiol. Molecular Biol. Rev. 2000. V. 64. № 3. P. 548–572. https://doi.org/10.1128/MMBR.64.3.548-572.2000
  23. Pannekens M., Kroll L., Müller H., Mbow F.T., Meckenstock R.U. Oil reservoirs, an exceptional habitat for microorganisms // N. Biotechnol. 2019. V. 49. P. 1–9. https://doi.org/10.1016/j.nbt.2018.11.006
  24. Pedersen K. Microbial processes in radioactive waste disposal. 2000. https://www.researchgate.net/publication/ 264450697_Microbial_Processes_in_Radioactive_Waste_ Disposal
  25. Ranjani A., Dhanasekaran D., Gopinath P.M. An Introduction to Actinobacteria // Actinobacteria – Basics and Biotechnological Applications. InTech, 2016. https://doi.org/10.5772/62329
  26. Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A. et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities // Appl. Environ. Microbiol. 2009. V. 75. № 23. P. 7537–7541. https://doi.org/10.1128/AEM.01541-09
  27. Smart N.R., Rance A.P., Reddy B., Hallbeck L., Pedersen K., Johansson A.J. In situ evaluation of model copper-cast iron canisters for spent nuclear fuel: a case of microbiologically influenced corrosion (MIC) // Corrosion Engineering, Sci. Technol. 2014. V. 49. № 6. P. 548–553. https://doi.org/10.1179/1743278214Y.0000000213
  28. Steinberg J.P., Burd E.M. Other Gram-Negative and Gram-Variable Bacilli // Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 2014. V. 2. P. 2667–2683. https://doi.org/10.1016/B978-1-4557-4801-3.00238-1
  29. Stipanicev M., Turcu F., Esnault L., Schweitzer E.W., Kilian R., Basseguy R. Corrosion behavior of carbon steel in presence of sulfate-reducing bacteria in seawater environment // Electrochim. Acta. 2013. V. 113. P. 390–406. https://doi.org/10.1016/j.electacta.2013.09.059
  30. Stroes-Gascoyne S., Hamon C.J., Dixon D.A., Martino J.B. Microbial analysis of samples from the tunnel sealing experiment at AECL’s Underground Research Laboratory // Phys. Chem. Earth, Parts A/B/C. 2007. V. 32. № 1–7. P. 219–231. https://doi.org/10.1016/j.pce.2006.01.002
  31. Taborowski T. et al. Bacterial presence and activity in compacted bentonites. Mölnlycke, 2019. https://igdtp. eu/wp-content/uploads/2019/05/MIND-2019-04-D2.4-BacterialPresenceActivityInCompactedBentonites-v2.pdf
  32. Wersin P., Johnson L.H., McKinley I.G. Performance of the bentonite barrier at temperatures beyond 100°C: A critical review // Phys. Chem. Earth, Parts A/B/C. 2007. V. 32. № 8–14. P. 780–788. https://doi.org/10.1016/j.pce.2006.02.051
  33. Willems A. The family Comamonadaceae // The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. 2014. V. 9783642301971. https://doi.org/10.1007/978-3-642-30197-1_238
  34. http://info.geology.gov.kz/
  35. https://mothur.org/wiki/miseq_sop
  36. https://mothur.org/wiki/silva_reference_files/

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (61KB)
3.

Жүктеу (62KB)
4.

Жүктеу (115KB)

© Д.Д. Кошелева, В.С. Чепцов, А.Л. Степанов, И.И. Толпешта, В.В. Крупская, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>