Blue Carbon Stocks and Carbon Dioxide Emission from Soils of Marsh Ecosystems of the Pomor Coast of the White Sea
- Authors: Bagdasarov I.E.1, Bobrik A.A.1, Kazhukalo G.A.1, Terebova E.N.2, Pavlova M.A.2, Krasilnikov P.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Petrozavodsk State University
- Issue: No 10 (2025)
- Pages: 1310-1326
- Section: SOIL CHEMISTRY
- URL: https://journals.rcsi.science/0032-180X/article/view/308809
- DOI: https://doi.org/10.31857/S0032180X25100062
- EDN: https://elibrary.ru/jvchxt
- ID: 308809
Cite item
Abstract
The study is aimed at solving fundamental problems of soil science and ecology related to the assessment of the carbon budget in coastal soils and ecosystems of the Arctic and Subarctic, as well as their functioning in hanging climate. The study estimated for the first time the stocks of “blue carbon” and the emission of carbon dioxide from soils of marsh ecosystems at the Pomor coast of the White Sea. Carbon stocks in the most seaward part of the coastal zone accumulate due to the input of allochthonous, thalassogenic organic matter: mean stocks at the lower marsh level are 25.5 ± 4.3 t/ha. At a distance from the boundary of daily flooding, the stocks of soil carbon are mostly formed by the biogenic accumulation of organic matter: the mean value at the upper marsh is 37.5 ± 23.4 t/ha. Soils of marsh ecosystems at the Pomor coast of the White Sea are characterized by low values of carbon dioxide emission (98 ± 16 mg CO2/(m2 h), July–August 2023), which attests to their low biological activity. Statistically significant differences in the average values of carbon dioxide emission are revealed at the ecosystem level: CO2 emission from soils of marsh ecosystems is lower than that from soils of forest ecosystems of the bedrock coast. The average values of CO2 emission from soils do not differ statistically significantly at middle and upper marsh levels. Minimum emission values are typical for soils at lower marsh levels and mudflats (Watten). Spatial variation and relationship of CO2 emission from soils of marsh ecosystems with the environment factors are assessed. The results of the study, based on statistical analysis of a large database, contribute to a better understanding of the role of marsh ecosystems of the western sector of the Russian Arctic in the carbon budget.
About the authors
I. E. Bagdasarov
Lomonosov Moscow State University
Email: ilya5283@yandex.ru
Moscow, 119991 Russia
A. A. Bobrik
Lomonosov Moscow State University
Email: ilya5283@yandex.ru
Moscow, 119991 Russia
G. A. Kazhukalo
Lomonosov Moscow State University
Email: ilya5283@yandex.ru
Moscow, 119991 Russia
E. N. Terebova
Petrozavodsk State University
Email: ilya5283@yandex.ru
Petrozavodsk, 185910 Russia
M. A. Pavlova
Petrozavodsk State University
Email: ilya5283@yandex.ru
Petrozavodsk, 185910 Russia
P. V. Krasilnikov
Lomonosov Moscow State University
Author for correspondence.
Email: ilya5283@yandex.ru
Moscow, 119991 Russia
References
- Агаджанова Н.В., Багдасаров И.Е., Крюкова Ю.А., Красильников П.В. Минералогический состав илистой фракции маршевых почв Поморского берега Белого моря // Вестник Моск. ун-та. Сер. 17, почвоведение. 2025. № 1. С. 27–37. https://doi.org/ 10.55959/MSU0137-0944-17-2025-80-1-27-37
- Багдасаров И.Е., Цейц М.А., Крюкова Ю.А., Таскина К.Б., Конюшкова М.В. Сравнительная характеристика почвенного и растительного покрова томболо побережий Белого и Балтийского морей // Вестник Моск. ун-та. Сер. 17, почвоведение 2023. № 1. С. 3–15. https://doi.org/10.55959/MSU0137-0944-17-2023-78-1-3-15
- Горячкин С.В. Почвенный покров Севера (структура, генезис, экология, эволюция). М.: ГЕОС, 2010. 414 с.
- Губин С.В., Лупачев А.В. Подходы к классификации почв аккумулятивных берегов морей восточного сектора Российской Арктики // Почвоведение. 2022. № 1. С. 25–32. https://dx.doi.org/10.31857/S0032180X22010051
- Губин С.В., Лупачев А.В., Ходжаева А.К. Почвы аккумулятивных берегов Восточно-Сибирского моря // Почвоведение. 2022. № 9. С. 1073–1085. https://dx.doi.org/10.31857/S0032180X22090076
- Дыхание почвы. Пущино, 1993. 144 с.
- Кобак К.И. Биотические компоненты углеродного цикла. Л.: Гидрометеоиздат, 1988. 248 c.
- Костенкова А.Ф. Маршевые почвы юга Приморья и особенности их солевого состава // Почвоведение. 1979. № 2. С. 22–29.
- Леонтьев О.К., Рычагов Г.И. Общая геоморфология: Учебное пособие для географических специальностей вузов. М.: Высшая школа, 1979. 287 с.
- Лесков А.И. Геоботанический очерк приморских лугов Малоземельского побережья Баренцева моря // Ботанический журнал. 1936. Т. 88. № 2. С. 60–74.
- Мировая реферативная база почвенных ресурсов. Международная система почвенной классификации для диагностики почв и составления легенд почвенных карт. М.: МАКС Пресс, 2024. 248 с.
- Мосеев Д.С., Сергиенко Л.А. Растительный покров маршей устьевой области реки Тапшеньги Онежского залива Белого моря // Вестник Ин-та биологии Коми НЦ УрО РАН. 2017. № 4. С. 22–31. https://doi.org/10.31140/j.vestnikib.2017.4(202)4
- Наумов А.В. Дыхание почвы: составляющие, экологические функции, географические закономерности. Новосибирск: Изд-во СО РАН, 2009. 208 с.
- Орешникова Н. В., Красильников П.В., Шоба С.А. Маршевые почвы Карельского берега Белого моря // Вестник Моск. ун-та. Сер. 17, почвоведение 2012. № 4. С. 13–20.
- Сидорова, В.А., Святова Е.Н., Цейц М.А. Пространственное варьирование свойств маршевых почв и их влияние на растительность (Кандалакшский залив) // Почвоведение. 2015. № 3. С. 259–267. https://doi.org/10.7868/S0032180X15030119
- Цейц М.А., Добрынин Д.В. Морфогенетическая диагностика и систематика маршевых почв Карельского Беломорья // Почвоведение. 1997. № 4. С. 411–416.
- Шамрикова Е.В., Денева С.В., Кубик О.С. Распределение углерода и азота в почвенном покрове прибрежной территории Баренцева моря (Хайпудырская губа) // Почвоведение. 2019. № 5. С. 558–569. https://doi.org/10.1134/S0032180X19030092
- Шляхов С.А. Классификация почв морских побережий. Владивосток, 1996. 35 с.
- Шляхов С.А., Костенков Н.М. Классификация и морфологические особенности почв равнинных морских побережий // Почвоведение. 1998. № 10. С. 1157–1163.
- Bagdasarov I.E., Tseits M.A., Kryukova I.A., Taskina K.B., Bobrik A.A., Ilichev I.A., Cheng J., Xu L., Krasilnikov P.V. Carbon stock in coastal ecosystems of tombolos of the White and Baltic seas // Land. 2024. V. P. 1–21. https://doi.org/10.3390/land13010049
- Bouillon S., Dahdouh-Guebas F., Rao A.V.V.S., Koedam N., Dehairs F. Sources of organic carbon in mangrove sediments: variability and possible ecological implications // Hydrobiologia. 2003. V. 495. P. 33–39. https://doi.org/10.1023/A:1025411506526
- Chapman V.J. Salt Marshes and Salt Deserts оf the World. London: Leonard Hill Limited, 1960. 392 p.
- Chastain S.G., Kohfeld K., Pellatt M.G. Carbon stocks and accumulation rates in salt marshes of the Pacific coast of Canada // Biogeosciences Discussions. 2018. V. 2018. P. 1–45. https://doi.org/10.5194/bg-2018-166
- Chmura G.L., Anisfeld S.C., Cahoon D.R., Lynch J.C. Global carbon sequestration in tidal, saline wetland soils // Global Biogeochem. Cycles. 2003. V. 17. P. 22-1–22-12. https://doi.org/10.1029/2002GB001917
- Duarte C.M., Losada I.J., Hendriks I.E., Mazarrasa I., Marbà N. The role of coastal plant communities for climate change mitigation and adaptation // Nat. Сlim. Change. 2013. V. 3. P. 961–968. https://doi.org/10.1038/nclimate1970
- Gilby B.L., Weinstein M.P., Baker R., Cebrian J., Alford S.B., Chelsky A., Colombano D. et al. Human actions alter tidal marsh seascapes and the provision of ecosystem services // Estuar. Coasts. 2021. V. 44. P. 1628–1636. https://doi.org/10.1007/s12237-020-00830-0
- Johnson B.J., Moore K.A., Lehmann C., Bohlen C., Brown T.A. Middle to Late Holocene fluctuations of C3 and C4 vegetation in a northern New England salt marsh, Sprague Marsh, Phippsburg Maine // Org. Geochem. 2007. V. 38. P. 394–403. https://doi.org/10.1016/j.orggeochem.2006.06.006
- Kato K. Chemical investigations on marine humus in bottom sediments // Memoirs of the Faculty of Fisheries Hokkaido University. 1956. V. 4. P. 91–209.
- Kennedy H., Beggins J., Duarte C.M., Fourqurean J.W., Holmer M., Marbà N., Middelburg J.J. Seagrass sediments as a global carbon sink: Isotopic constraints // Global Biogeochem. Cycles. 2010. V. 24. https://doi.org/10.1029/2010GB003848
- Kubiëna W.L. The soils of Europe: London: Thomas Murry and company, 1953. P. 83–104.
- Leonardi N., Carnacina I., Donatelli C., Ganju N.K. Plater A.J., Schuerch M., Temmerman S. Dynamic interactions between coastal storms and salt marshes: A review // Geomorphology. 2018. P. 92–107. https://doi.org/10.1016/j.geomorph.2017.11.001
- Lovelock C.E., Reef R. Variable impacts of climate change on blue carbon // One Earth. 2020. V. 3. P. 195–211. https://doi.org/10.1016/j.oneear.2020.07.010
- Mason V.G., Burden A., Epstein G., Jupe L.L., Wood K.A., Skov M.W. Blue carbon benefits from global saltmarsh restoration // Global Change Biology. 2023. V. 29. P. 6517–6545. https://doi.org/10.1111/gcb.16943
- Mcleod E., Chmura G.L., Bouillon S., Salm R., Björk M., Duarte C.M., Lovelock C.E., Silliman B.R. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 // Front. Ecol. Environ. 2011. V. 9. P. 552–560. https://doi.org/10.1890/110004
- Middelburg J.J., Nieuwenhuize J., Lubberts R.K., Van de Plassche O. Organic carbon isotope systematics of coastal marshes // Estuar. Coast. Shelf S. 1997. V. 45. P. 681–687. https://doi.org/10.1006/ecss.1997.0247
- Nellemann C., Corcoran E., Duarte C.M., Valdés L., De Young C., Fonseca L., Grimsditch G. Blue Carbon: The Role of Healthy Oceans in Binding Carbon: a Rapid Response Assessment. Arendal, Norway: United Nations Environment Programme, Birkeland Trykkeri AS, 2009. 78 p
- Neubauer S.C. Contributions of mineral and organic components to tidal freshwater marsh accretion // Estuar. Coast. Shelf S. 2008. V. 78. P. 78–88. https://doi.org/10.1016/j.ecss.2007.11.011
- Orson R.A., Simpson R.L., Good R.E. Rates of sediment accumulation in a tidal freshwater marsh // J. Sediment Res. 1990. V. 60. P. 859–869. https://doi.org/10.1306/D4267631-2B26-11D7-8648000102C1865D
- Pennings S.C., Bertness M.D. Salt marsh communities // Marine Comm. Ecol. 2001. V. 11. P. 289–316.
- Rossi A.M., Rabenhorst M.C. Pedogenesis and landscape relationships of a Holocene age barrier island // Geoderma. 2016. V. 262. P. 71–84. https://doi.org/10.1016/j.geoderma.2015.08.004
- Roulet N.T. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: Prospects and significance for Canada // Wetlands. 2000. V. 20. P. 605–615. https://doi.org/10.1672/0277-5212(2000)020[0605:PCSGGA]2.0.CO;2
- Spivak A.C., Sanderman J., Bowen J.L., Canuel E.A., Hopkinson C.S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems // Nat. Geosci. 2019. V. 12. P. 685–692. https://doi.org/10.1038/s41561-019-0435-2
- Tseits M.A., Dobrynin D.V. Classification of marsh soils in Russia // Eurasian Soil Sci. 2005. V. 38. Suppl. 1. P. 44–48.
- Tseits M. A., Marechek M. S. The formation of soil cover patterns on tidal marshes of the Arctic of Russia // Moscow University Soil Science Bulletin. 2021. V. 76. P. 273–282. https://doi.org/10.3103/S0147687421050057
- Wang F., Sanders C.J., Santos I.R., Tang J., Schuerch M., Kirwan M.L., Kopp R.E., Zhu K., Li X., Yuan J., Liu W., Li Z.A. Global blue carbon accumulation in tidal wetlands increases with climate change // National Sci. Rev. 2021. V. 8. P. nwaa296. https://doi.org/10.1093/nsr/nwaa296
- Williamson P., Gattuso J.P. Carbon removal using coastal blue carbon ecosystems is uncertain and unreliable, with questionable climatic cost-effectiveness // Frontiers in Climate. 2022. V. 4. P. 853666. https://doi.org/10.3389/fclim.2022.853666
- Wilson B.J., Mortazavi B., Kiene R.P. Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary // Biogeochemistry. 2015. V. 123. P. 329–347. https://doi.org/10.1007/s10533-015-0085-4
- Zhang J., Wang J.J., Xiao R., Deng H., DeLaune R.D. Effect of salinity on greenhouse gas production and emission in marsh soils during the decomposition of wetland plants // J. Soils Sediments. 2023. V. 23. P. 131–144. https://doi.org/10.1007/s11368-022-03334-5
Supplementary files
