Lithium Ecotoxicity Assessment in Soils with Contrasting Properties
- Authors: Ruseva A.S.1, Evstegneeva N.A.1, Kolesnikov S.I.1, Timoshenko A.N.1, Minnikova T.V.1, Kazeev K.S.1
-
Affiliations:
- Academy of Biology and Biotechnology of the Ivanovsky Southern Federal University
- Issue: No 10 (2025)
- Pages: 1378-1390
- Section: DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
- URL: https://journals.rcsi.science/0032-180X/article/view/308803
- DOI: https://doi.org/10.31857/S0032180X25100117
- EDN: https://elibrary.ru/jwlzaf
- ID: 308803
Cite item
Abstract
About the authors
A. S. Ruseva
Academy of Biology and Biotechnology of the Ivanovsky Southern Federal UniversityRostov-on-Don, 344090 Russia
N. A. Evstegneeva
Academy of Biology and Biotechnology of the Ivanovsky Southern Federal University
Email: Natalja.evstegneewa@yandex.ru
Rostov-on-Don, 344090 Russia
S. I. Kolesnikov
Academy of Biology and Biotechnology of the Ivanovsky Southern Federal UniversityRostov-on-Don, 344090 Russia
A. N. Timoshenko
Academy of Biology and Biotechnology of the Ivanovsky Southern Federal UniversityRostov-on-Don, 344090 Russia
T. V. Minnikova
Academy of Biology and Biotechnology of the Ivanovsky Southern Federal UniversityRostov-on-Don, 344090 Russia
K. S. Kazeev
Academy of Biology and Biotechnology of the Ivanovsky Southern Federal UniversityRostov-on-Don, 344090 Russia
References
- Гопп Н.В., Савенков О.А., Нечаева Т.В., Смирнова Н.В. Использование NDVI в цифровом картографировании содержания подвижного лития в пахотном горизонте почв на юге Западной Сибири // Исслед. Земли из космоса. 2017. № 6. С. 23–30. https://doi.org/10.1134/S0032180X19030055
- Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Исследование фитотоксичности свинца для растений редиса и салата при выращивании на разных типах почв // Агрохимия. 2019. № 6. С. 72–80. https://doi.org/10.1134/S0002188119030050
- Евстегнеева Н.А., Колесников С.И., Тимошенко А.Н., Минникова Т.В., Цепина Н.И., Казеев К.Ш. Оценка экотоксичности таллия по биологическим свойствам почв // Почвоведение. 2024. № 3. С. 470–481.
- Егоров В.В., Иванова Е. Н., Фридланд В.М., Розов Н.И. Классификация и диагностика почв СССР. М.: Колос, 1977. 223 с.
- Казеев К.Ш., Колесников С.И., Акименко Ю.В., Даденко Е.В. Методы биодиагностики наземных экосистем. Ростов на Дону: Изд-во ЮФУ, 2016. 356 с.
- Колесников С.И., Казеев К.Ш., Вальков В.Ф. Влияние загрязнения тяжелыми металлами на эколого-биологические свойства чернозема обыкновенного // Экология. 2000. № 3. С. 193–201.
- Колесников С.И., Спивакова Н.А., Казеев К.Ш. Влияние модельного загрязнения Cr, Cu, Ni, Pb на биологические свойства почв сухих степей и полупустынь юга России // Почвоведение. 2011. № 9. С. 1094–1101.
- Колесников С.И., Тимошенко А. Н., Казеев К.Ш., Акименко Ю.В., Мясникова М.А. Оценка экотоксичности наночастиц меди, никеля и цинка по биологическим показателям чернозема // Почвоведение. 2019. № 8. С. 986–992. https://doi.org/10.1134/S0032180X19080094
- Колесников С.И., Тлехас З.Р., Казеев К.Ш., Вальков В.Ф. Изменение биологических свойств почв Адыгеи при химическом загрязнении // Почвоведение. 2009. № 12. С. 1499–1505.
- Плеханова И.О., Золотарева О.А., Тарасенко И.Д., Яковлев А.С. Оценка экотоксичности почв в условиях загрязнения тяжелыми металлами // Почвоведение. 2019. № 10. С. 1243–1258. https://doi.org/10.1134/S0032180X19100083
- Полянская Л.М., Пинчук И.П., Степанов А.Л. Сравнительный анализ методов люминесцентной микроскопии и каскадной фильтрации для оценки численности и биомассы бактерий в почве: роль разведения почвенной суспензии // Почвоведение. 2017. № 10. С. 1216–1219. https://doi.org/10.7868/S0032180X17100082
- Терехова В.А. Биотестирование экотоксичности почв при химическом загрязнении: современные подходы к интеграции для оценки экологического состояния (обзор) // Почвоведение. 2022. № 5. С. 586–599. https://doi.org/10.31857/S0032180X22050094
- Тимошенко А.Н., Колесников С.И., Кабакова В.С., Евстегнеева Н.А., Цепина Н.И., Минникова Т.В., Казеев К.Ш. Оценка экотоксичности оксида платины по биологическим показателям чернозема обыкновенного // Экология и промышленность России. 2024. Т. 28. № 1. С. 22–27. https://doi.org/10.18412/1816-0395-2024-1-22-27
- Шляпин Д.А., Суровикин Ю.В., Мишаков И.В., Агафонов Д.В., Нецкина О.В. Способы утилизации литий-ионных аккумуляторов. Часть 2. Переработка электродных материалов // Экология и промышленность России. 2024. Т. 28. № 11. С. 40–46. https://doi.org/10.18412/1816-0395-2024-11-40-46
- Avila-Arias H., Nies L.F., Gray M.B., Turco R.F. Impacts of molybdenum-, nickel-, and lithium-oxide nanomaterials on soil activity and microbial community structure // Sci. Total Environ. 2019. V. 652. P. 202–211. https://doi.org/10.1016/j.scitotenv.2018.10.189
- Bakhat H.F., Rasul K., Farooq A.B.U., Zia Z., Natasha, Fahad S., Abbas S., Shah G.M., Rabbani F., Hammad H.M. Growth and physiological response of spinach to various lithium concentrations in soil // Environ. Sci. Pollut. Res. 2020. V. 27. P. 39717–39725.https://doi.org/10.1007/s11356-019-06877-2
- Barsova N., Yakimenko O., Tolpeshta I., Motuzova G. Current state and dynamics of heavy metal soil pollution in Russian Federation–A review // Environ. Pollut. 2019. V. 249. P. 200–207. https://doi.org/10.1016/j.envpol.2019.03.020
- Bibienne T., Magnan J.F., Rupp A., Laroche N. From mine to mind and mobiles: Society’s increasing dependence on lithium // Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology. 2020. V. 16. P. 265–270. https://doi.org/10.2138/gselements.16.4.265
- Bolan N., Hoang S.A., Tanveer M., Wang L., Bolan S., Sooriyakumar P., Robinson B., Wijesekara H. et al. From mine to mind and mobiles–Lithium contamination and its risk management // Environ. Poll. 2021. V. 290. P. 1–15. https://doi.org/10.1016/j.envpol.2021.118067
- Bradley D.C., Stillings L.L., Jaskula B.W., Munk L.A., McCauley A.D. Lithium Critical Mineral Resources of the United States–Economic and Environmental Geology and Prospects for Future Supply. U.S. Geol. Surv. Prof. Pap. 2017. P. K1–K21.
- Chow A.T. Proactive approach to minimize lithium pollution // J. Environ. Qual. 2022. V. 51. P. 872–876. https://doi.org/10.1002/JEQ2.20405
- Đorđević D., Tadić J. M., Grgur B., Ristić R., Sakan S., Brezjanović J., Stevanović V., Šolaja B. The influence of exploration activities of a potential lithium mine to the environment in Western Serbia // Sci. Rep. 2024. V. 14. P. 1–9. https://doi.org/10.1038/s41598-024-68072-9
- Enya O., Heaney N., Iniama G., Lin C. Effects of heavy metals on organic matter decomposition in inundated soils: Microcosm experiment and field examination // Sci. Total Environ. 2020. 724. P. 138223. https://doi.org/10.1016/j.scitotenv.2020.138223
- Fierling N., Billard P., Fornasier F., Bauda P., Blaudez D. Structural and functional responses of soil fungal and bacterial communities to a lithium contamination gradient // Sci. Total Environ. 2025. V. 964. P. 178565. https://doi.org/10.1016/j.scitotenv.2025.178565
- Franzaring J., Schlosser S., Damsohn W., Fangmeier A. Regional differences in plant levels and investigations on the phytotoxicity of lithium // Environ. Pollut. 2016. V. 216. P. 858–865. https://doi.org/10.1016/j.envpol.2016.06.059
- Furtak K., Gajda A.M. Biochemical methods for the evaluation of the functional and structural diversity of microorganisms on the soil environment // Postepy Mikrobiol. 2018. V. 57. P. 194–202. https://doi.org/10.21307/PM-2018.57.2.194
- Gospodarek J., Rusin M., Barczyk G., Nadgórska-Socha A. The effect of petroleum-derived substances and their bioremediation on soil enzymatic activity and soil invertebrates // Agronomy. 2021. V. 11. P. 1–20. https://doi.org/10.3390/agronomy11010080
- Grosjean C., Miranda P.H., Perrin M., Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry // Renewable Sustainable Energy Rev. 2012. V. 16. P. 1735–1744. https://doi.org/10.1016/j.rser.2011.11.023
- Hayyat M.U., Nawaz R., Siddiq Z., Shakoor M.B., Mushtaq M., Ahmad S.R., Ali S. et al.. Investigation of lithium application and effect of organic matter on soil health // Sustainability. 2021. V. 13. P. 1–15. https://doi.org/10.3390/su13041705
- Kabata-Pendias A. Trace Elements in Soils and Plants. Boca Raton: Crc Press, 2010. 548 p.
- Kastori R., Maksimović I., Putnikdelić M. Lithium in the environment and its effects on higher plants // Contemp. Agric. 2022. V. 71. P. 226–239. https://doi.org/10.2478/contagri-2022-0030
- Kaushik A., Sethi V. Salinity effects on nitrifying and free diazotrophic bacterial populations in the rhizosphere of rice // Bull. National Institute Ecol. 2005. V. 15. P. 139–144.
- Kolesnikov S., Evstegneeva N., Minnikova T., Timoshenko A., Tsepina N., Kazeev K. Assessment of ecotoxicity of tellurium in soils of contrasting properties // Emerg. Contam. 2024. P. 100334. https://doi.org/10.1016/j.emcon.2024.100334
- Lin Y., Ye Y., Hu Y., Shi H. The variation in microbial community structure under different heavy metal contamination levels in paddy soils // Ecotoxicol. Environ. Saf. 2019. V. 180. P. 557–564. https://doi.org/10.1016/j.ecoenv.2019.05.057
- Luong J.H.T., Tran C., Ton-That D. A paradox over electric vehicles, mining of lithium for car batteries // Energies. 2022. V. 15. P. 1–25. https://doi.org/10.3390/en15217997
- Neves O., Moreno F., Pinheiro D., Pinto M. C., Inácio M. Soil low-density geochemical mapping of technology-critical elements (TCEs) and its environmental implications: The case of lithium in Portugal // Sci. Total Environ. 2024. V. 934. P. 173207. https://doi.org/10.1016/j.scitotenv.2024.173207
- Robinson B.H., Yalamanchali R., Reiser R., Dickinson N.M. Lithium as an emerging environmental contaminant: Mobility in the soil-plant system // Chemosphere. 2018. V. 197. P. 1–6. https://doi.org/10.1016/j.chemosphere.2018.01.012
- Sarma H., Basumatary T., Yousaf B., Narayan M. Nanoplastics and lithium accumulation in soil-plant systems: Assessing uptake, toxicological effects, and potential synergistic interactions // CRBIOT 2023. P. 100170. https://doi.org/10.1016/j.crbiot.2023.100170
- Schlesinger W.H., Klein E.M., Wang Z., Vengosh A. Global biogeochemical cycle of lithium // Glob. Biogeochem. Cycles. 2021. V. 35. P. 1–18. https://doi.org/10.1029/2021GB006999
- Sethi S., Gupta S. Responses of soil enzymes to different heavy metals // Biolife. 2015. V. 3. P. 147–153.http://dx.doi.org/10.17812/blj3110
- Shahzad B., Tanveer M., Hassan W., Shah A.N., Anjum S.A., Cheema S.A., Ali I. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities–A review // Plant Physiol. Biochem. 2016. V. 107. P. 104–115. https://doi.org/10.1016/j.plaphy.2016.05.034
- Shakoor N., Adeel M., Ahmad M.A., Hussain M., Azeem I., Zain M., Zhou P., Li Y., Xu M., Rui Y. Environment relevant concentrations of lithium influence soybean development via metabolic reprogramming // J. Hazard. Mater. 2023. V. 441. P. 129898. https://doi.org/10.1016/j.jhazmat.2022.129898
- Shakoor N., Adeel M., Azeem I., Ahmad M.A., Zain M., Abbas A., Rui Y. Interplay of higher plants with lithium pollution: Global trends, meta-analysis, and perspectives // Chemosphere. 2022. P. 136663. https://doi.org/10.1016/j.chemosphere.2022.136663
- Sobolev O.I., Gutyj B.V., Darmohray L.M., Sobolievа S.V., Ivanina V.V., Kuzmenko O.A., Karkach P.M. et al. Lithium in the natural environment and its migration in the trophic chain // Ukr. J. Ecol. 2019. V. 9. P. 195–203.
- Sun C., Zhao W., Zhang Q., Yu X., Zheng X., Zhao J., Lv M. Spatial distribution, sources apportionment and health risk of metals in topsoil in Beijing, China // Int. J. Environ. Res. Public Health. 2016. V. 13. P. 727. https://doi.org/10.3390/ijerph13070727
- Swain B. Recovery and recycling of lithium: A review // Sep. Purif. Technol. 2017. V. 172. P. 388–403. https://doi.org/10.1016/j.seppur.2016.08.031
- Tan X., Nie Y., Ma X., Guo Z., Liu Y., Tian H., Megharaj M., Weijun S., He W. Soil chemical properties rather than the abundance of active and potentially active microorganisms control soil enzyme kinetics // Sci. Total Environ. 2021. V. 770. P. 144500. https://doi.org/10.1016/j.scitotenv.2020.144500
- Wieczorek D., Marchut-Mikolajczyk O., Antczak T. Changes in microbial dehydrogenase activity and pH during bioremediation of fuel contaminated soil // BioTechnologia. J. Biotechnol. Computat. Biol. Bionanotechnol. 2015. V. 96. P. 293–306. https://doi.org/10.5114/bta.2015.58377
- World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition published in 2022 by the International Union of Soil Sciences (IUSS), Vienna, Austria. 2022, 234 p.
- Xu Z., Zhang Z., Peng S., Yuan Y., Wang X. Influences of lithium on soil properties and enzyme activities // Chemosphere. 2023. V. 313. P. 137458. https://doi.org/10.1016/j.chemosphere.2022.137458
- Yang Y. Production of lithium metal with ion-selective solid electrolytes // Green Energy Environ. 2020. V. 5. P. 382–384. https://doi.org/10.1016/j.gee.2020.04.011
- Zhang M., Zhang T., Zhou L., Lou W., Zeng W., Liu T., Yin H., Liu H., Liu X., Mathivanan K., Praburaman L. Soil microbial community assembly model in response to heavy metal pollution // Environ. Res. 2022. V. 213. P. 113576. https://doi.org/10.1016/j.envres.2022.113576
Supplementary files
