Metagenomic profiling of the soil microbiological community in the area of impact of the tailings dump of the Urup mining and processing plant (Karachay-Cherkess Republic)
- Authors: Khrapai E.S.1, Kolesnikov S.I.1, Kuzina A.A.1, Kazeev K.S.1, Minnikova T.V.1, Demin K.A.1, Kocharovskaya Y.N.1,2, Delegan Y.A.1,2, Bogun A.G.2, Minkina T.M.1, Sushkova S.N.1
-
Affiliations:
- Ivanovsky Academy of Biology and Biotechnology, Federal University
- Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences
- Issue: No 9 (2025)
- Pages: 1175-1187
- Section: SOIL BIOLOGY
- URL: https://journals.rcsi.science/0032-180X/article/view/308167
- DOI: https://doi.org/10.31857/S0032180X25090061
- EDN: https://elibrary.ru/jbnyaj
- ID: 308167
Cite item
Abstract
About the authors
E. S. Khrapai
Ivanovsky Academy of Biology and Biotechnology, Federal University
Email: KaterinaP1996@mail.ru
Rostov-on-Don, 344090 Russia
S. I. Kolesnikov
Ivanovsky Academy of Biology and Biotechnology, Federal UniversityRostov-on-Don, 344090 Russia
A. A. Kuzina
Ivanovsky Academy of Biology and Biotechnology, Federal UniversityRostov-on-Don, 344090 Russia
K. Sh. Kazeev
Ivanovsky Academy of Biology and Biotechnology, Federal UniversityRostov-on-Don, 344090 Russia
T. V. Minnikova
Ivanovsky Academy of Biology and Biotechnology, Federal UniversityRostov-on-Don, 344090 Russia
K. A. Demin
Ivanovsky Academy of Biology and Biotechnology, Federal UniversityRostov-on-Don, 344090 Russia
Yu. N. Kocharovskaya
Ivanovsky Academy of Biology and Biotechnology, Federal University; Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of SciencesRostov-on-Don, 344090 Russia; Pushchino, 142290, Russia
Ya. A. Delegan
Ivanovsky Academy of Biology and Biotechnology, Federal University; Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of SciencesRostov-on-Don, 344090 Russia; Pushchino, 142290, Russia
A. G. Bogun
Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of SciencesPushchino, 142290, Russia
T. M. Minkina
Ivanovsky Academy of Biology and Biotechnology, Federal UniversityRostov-on-Don, 344090 Russia
S. N. Sushkova
Ivanovsky Academy of Biology and Biotechnology, Federal UniversityRostov-on-Don, 344090 Russia
References
- Алиева И.В., Бабьева И.П., Бызов Б.А., Гузеев В.С., Добровольская Т.Г., Звягинцев Д.Г., Зенова Г.М. и др. Методы почвенной микробиологии и биохимии / Под ред. Звягинцева Д.Г. М.: Изд-во МГУ, 1991. С. 132–140
- Даденко Е.В., Казеев К.Ш., Колесников С.И. Методы определения ферментативной активности почв. Ростов-на-Дону: Южный федеральный университет 2021. 176 с.
- Евстегнеева Н.А., Колесников С.И., Тимошенко А.Н., Минникова Т.В., Цепина Н.И., Казеев К.Ш. Оценка экотоксичности таллия по биологическим свойствам почв // Почвоведение. 2024. № 3. С. 470–481.
- Иванова Е.А., Першина Е.В., Карпова Д.В., Тхакахова А.К., Железова А.Д., Рогова О.Б., Андронов Е.Е. Прокариотные сообщества почвогрунтов отвалов Курской магнитной аномалии // Экологическая генетика. 2020. Т. 18. С. 331–342. https://doi.org/10.17816/ecogen17901
- Казеев К.Ш., Вальков В.Ф., Колесников С.И. Атлас почв юга России. Ростов-на-Дону: Эверест, 2010. 128 с.
- Растанина Н.К., Голубев Д.А., Шаврин Е.И. Состояние экосферы и здоровья населения в границах влияния закрытого горного предприятия Приморья // Горный информационно-аналитический бюл. (научно-технический журнал). 2021. № 3. С. 114–127.
- Сает Ю.Е., Ревич Б.А., Янин Е.П., Смирнова Р.С., Башаркевич И.Л., Онищенко Т.Л., Павлова Л.Н. и др. Геохимия окружающей среды. М.: Недра, 1990. 335 с.
- Семенова И.Н., Рафикова Ю.С., Ильбулова Г.Р. Воздействие предприятий горнорудного комплекса башкирского зауралья на состояние природной среды и здоровье населения прилегающих территорий // Фундаментальные исследования. 2011. № 1. С. 29–34.
- Терехова В.А. Биотестирование экотоксичности почв при химическом загрязнении: современные подходы к интеграции для оценки экологического состояния (обзор) // Почвоведение. 2022. № 5. С. 586–599. https://doi.org/10.31857/S0032180X22050094
- Терехова В.А., Прудникова Е.В., Кирюшина А.П., Карпухин М.М., Плеханова И.О., Якименко О.С. Фитотоксичность тяжелых металлов в дерново-подзолистых почвах разной степени окультуренности // Почвоведение. 2021. №. 6. С. 757–768.
- Юрак В.В., Апакашев Р.А., Лебзин М.С., Малышев А.Н. Оценка эффективности и экологичности сорбент-ориентированного метода восстановления загрязненных тяжелыми металлами и металлоидами почв // Горные науки и технологии. 2023. № 4. С. 327–340.
- Юркевич Н.В., Шавекина А.Ш., Гаськова О.Л., Артамонова В.С., Бортникова С.Б., Волынкин С.С. Аутигенный барит в техногенных отвалах: минералого-геохимические данные и результаты физико-химического моделирования // Георесурсы. 2024. Т. 26. № 1. С. 38–51.
- Bai X. T., Wang J., Dong H., Chen J.-M., Ge Y. Relative importance of soil properties and heavy metals/metalloids to modulate microbial community and activity at a smelting site // J. Soils Sediment. 2020. V. 21. P. 1–12. https://doi.org/10.1007/s11368-020-02743-8
- Bilal S., Khan A. L., Shahzad R., Kim Y. H., Imran M., Khan M. J., et al. Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. lk11 and its cr(vi) phytotoxic mitigating effects in soybean (Glycine Max l.) // Ecotoxicol. Environ. Saf. 2018. V. 164. P. 648–658. https://doi.org/10.1016/j.ecoenv.2018.08.043
- Caeiro S., Costa M.H., Ramos T.B., Fernandes F., Silveira N., Coimbra A., Painho M. Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach // Ecol. Indic. 2005. V. 5. P. 151–169.http://dx.doi.org/10.1016/j.ecolind.2005.02.001
- Chen L., Wang J., Beiyuan J., Guo X., Wu H., Fang L. Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. // Sci. Total Environ. 2021. V. 816 P. 151556. https://doi.org/10.1016/j.scitotenv.2021.151556
- Gao S., Li S., Cao S., Zhong H., He Z. Disclosing the key role of Fe/As/Cu in community co-occurrence and microbial recruitment in metallurgical ruins // J. Hazard. Mater. 2024 V. 480. P. 135889. https://doi.org/10.1016/j.jhazmat.2024.135889
- Gao X., Chen C.T.A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay // Water Res. 2012. V. 46. P. 1901–1911. https://doi.org/10.1016/j.watres.2012.01.007
- Ghosh A., Sah D., Chakraborty M., Rai, J.P.N. Bio-mediated detoxification of heavy metal contaminated soil and phytotoxicity reduction using novel strain of Brevundimonas vancanneytii SMA3 // Heliyon. 2023. V. 9. P. e22344.
- Gołebiewski M., Deja-Sikora E., Cichosz M., Tretyn, A., Wrobel B. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils // Microb. Ecol. 2014. 67. P. 635-47. https://doi.org/10.1007/s00248-013-0344-7
- Guo H., Nasir M., Lv J., Dai Y., and Gao J. Understanding the variation of microbial comunity in heavy metals contaminated soil using high throughput sequencing // Ecotoxicol. Environ. Saf. 2017. V. 144. P. 300–306. https://doi.org/10.1016/j.ecoenv.2017.06.048
- Håkanson L. An ecological risk index for aquatic. Pollution control: A sedimentological approach” // Water Res. 1980. V. 14. P. 975–1001. http://dx.doi.org/10.1016/0043-1354(80)90143-8
- Halter D., Cordi A., Gribaldo S., Gallien S., Goulhen-Chollet F., Heinrich Salmeron A., et al. Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments // Res. Microbiol. 2011. V. 162. P. 877–887. https://doi.org/10.1016/j.resmic.2011.06.001
- Hou X., Han H., Tigabu M., Cai L., Meng F., Liu A., et al. Changes in soil physico-chemical properties following vegetation restoration mediate bacterial community composition and diversity in Changting. China // Ecol. Eng. 2019. V. 138. P. 171–179. https://doi.org/10.1016/j.ecoleng.2019.07.031
- https://benlangmead.github.io/aws-indexes/k2
- https://soil-db.ru/map?lat=44.0116&lng=41.1977&zoom=12
- Hu X., Liu X., Zhang S., Yu C. Nitrogen-cycling processes under long-term compound heavy metal (loids) pressure around a gold mine: Stimulation of nitrite reduction // J. Environ Sci. 2025. V. 147. P. 571–581. https://doi.org/10.1016/j.jes.2023.12.027
- IUSS Working Group. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition published in 2022 by the International Union of Soil Sciences (IUSS), Vienna, Austria. 2022.
- Jones D.S., Lapakko K.A., Wenz Z.J., Olson M.C., Roepke E.W., Sadowsky M.J., Bailey J.V. Novel microbial assemblages dominate weathered sulfide-bearing rock from copper-nickel deposits in the Duluth complex, Minnesota, USA // Appl. Environ. Microbiol. 2017. V. 83. P. e00909-17. https://doi.org/10.1128/aem.00909-17
- Kazapoe R.W., Amuah E.E.Y., Dankwa P., Ibrahim K., Mville B.N., Abubakari S., Bawa N. Compositional and source patterns of potentially toxic elements (PTEs) in soils in southwestern Ghana using robust compositional contamination index (RCCI) and k-means cluster analysis // Environ. Chall. 2021. V. 5. P. 100248. https://doi.org/10.1007/s10653-019-00404-5
- Kim C.S., Liu Z., Peng X., Qin K., Huang J., Niu J., Peng F. Paraconexibacter antarcticus sp. nov., a novel actinobacterium isolated from Antarctic tundra soil // IJSEM. 2022. V. 72. P. 005647. https://doi.org/10.1099/ijsem.0.005647
- Kolesnikov S.I., Evstegneeva N.A, Minnikova T.V., Timoshenko A.N., Tsepina N.I., Kazeev K.Sh. Assessment of ecotoxicity of tellurium in soils of contrasting properties. // Emerg. Contam. 2024. V. 10. P. 100334. https://doi.org/10.1016/j.emcon.2024.100334
- Kumari B., Chandra R. Benzo [a] pyrene degradation from hydrocarbon-contaminated soil and their degrading metabolites by Stutzerimonas stutzeri (LOBP-19A) // Waste Manage. 2023. V. 1. P. 115–127. http://dx.doi.org/10.1016/j.wmb.2023.07.006
- Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012. V. 9. P. 357–359.
- Li S., Zhao B., Jin M., Hu L., Zhong H., He Z. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter // J. Hazard. Mater. 2020. V. 400. P. 123255. https://doi.org/10.1016/j.jhazmat.2020.123255
- Mondal N.K., Dey U., Ghosh S., Datta J. K. Soil enzyme activity under arsenic-stressed area of Purbasthali. West Bengal, India. Arch. Agron // Soil Sci. 2014. V. 61. P. 73–87. https://doi.org/10.1080/03650340.2014.922178
- Mulet M., Gomila M., Lalucat J., Bosch R., Rossello-Mora R., García-Valdes E. Stutzerimonas decontaminans sp. nov. isolated from marine polluted sediments // Syst. Appl. Microbiol. 2023. V. 46. P. 126400. https://doi.org/10.1016/j.syapm.2023.126400
- Okewale I.A., Grobler H. Assessment of heavy metals in tailings and their implications on human health // Geosystems and Geoenvironment. 2023. V. 2. P. 100203. http://dx.doi.org/10.1016/j.geogeo.2023.100203
- Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’hara R. B., Oksanen M. J. et al. Package ‘vegan’ Community ecology package, version. 2013. V. 2. P. 1–295.
- Pejman A., Bidhendi G.N., Ardestani M., Saeedi M., Baghvand A. A new index for assessing heavy metals contamination in sediments: A case study // Ecol. Indic. 2015. V. 58. P. 365–373. http://dx.doi.org/10.1016/j.ecolind.2015.06.012
- Pereira L.B., Vicentini R., Ottoboni L.M. Changes in the bacterial community of soil from a neutral mine drainage channel // PLoS One. 2014. V. 9. P. e96605. https://doi.org/10.1371/journal.pone.0096605
- Qiao Z., Cao M., Wang D., Liao S., Wang G. Sphingosinicella humi sp. nov., isolated from arsenic-contaminated farmland soil and emended description of the genus Sphingosinicella // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 498–503. https://doi.org/10.1099/ijsem.0.003186
- Rungsihiranrut A., Muangchinda C., Naloka K., Dechsakulwatana C., Pinyakong, O. Simultaneous immobilization enhances synergistic interactions and crude oil removal of bacterial consortium. // Chemosphere. 2023. V. 340. P. 139934. http://dx.doi.org/10.1016/j.chemosphere.2023.139934
- Salvà-Serra F., Pérez-Pantoja D., Donoso R.A., Jaén-Luchoro D., Fernández-Juárez V., Engström-Jakobsson H., Bennasar-Figueras A. Comparative genomics of Stutzerimonas balearica (Pseudomonas balearica): diversity, habitats, and biodegradation of aromatic compounds // Front. Microbiol. 2023. V. 14. P. 1159176. http://dx.doi.org/10.3389/fmicb.2023.1159176
- Serkebaeva Y.M., Kim Y., Liesack W., Dedysh S.N. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions // PLoS One. 2013. V. 8. P. e63994. https://doi.org/10.1371/journal.pone.0063994
- Song X.D., Yang F., Ju B., Li D.C., Zhao Y.G., Yang J.L., et al. The influence of the conversion of grassland to cropland on changes in soil organic carbon and total nitrogen stocks in the Songnen Plain of Northeast China // Catena. 2018. V. 171. P. 588–601. http://dx.doi.org/10.1016/j.catena.2018.07.045
- Tang J., Zhang J., Ren L., Zhou Y., Gao J., Luo L., et al. Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution // J. Environ. Manag. 2019. V. 242. P. 121–130. https://doi.org/10.1016/j.jenvman.2019.04.061
- Varol M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques // J. Hazard. Mater. 2011. V. 195. P. 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051
- Vieira S., Huber K.J., Geppert A., Wolf J., Neumann-Schaal M., Luckner M., Overmann J. Capillimicrobium parvum gen. nov., sp. nov., a novel representative of Capillimicrobiaceae fam. nov. within the order Solirubrobacterales, isolated from a grassland soil International // J. Systematic Evolutionary Microbiol. 2022. V. 72. P. 005508. https://doi.org/10.1099/ijsem.0.005508
- Vieira S., Huber K. J., Geppert A., Wolf J., Neumann-Schaal M., Müsken M., Overmann J. Baekduia alba sp. nov., a novel representative of the order Solirubrobacterales isolated from temperate grassland soil // Int. J. Systematic Evolutionary Microbiol. 2023. V. 73. P. 005918. http://dx.doi.org/10.1099/ijsem.0.005918
- Volungevičius J., Skorupskas R. Classification of anthropogenic soil transformation // Geologija. Lithuanian Academy of Sciences, 2011. V. 53. P. 165–177.
- Wang B., Yuan X., Han L., Wang X., Zhang L. Release and bioavailability of heavy metals in three typical mafic tailings under the action of Bacillus mucilaginosus and Thiobacillus ferrooxidans // Environ. Earth Sci. 2015. V. 74. P. 5087–5096.
- Wang T., Yuan Z., and Yao J. A combined approach to evaluate activity and structure of soil microbial community in long-term heavy metals contaminated soils // Environ. Eng. Res. 2017. V. 23. P. 62–69. https://doi.org/10.4491/eer.2017.063
- Watanabe T., Kojima H., Fukui M. Sulfuriferula thiophila sp. nov., a chemolithoautotrophic sulfur-oxidizing bacterium, and correction of the name Sulfuriferula plumbophilus to Sulfuriferula plumbiphila corrig // Int. J. Systematic Evolutionary Microbiol. 2016. V. 66. P. 2041–2045.
- Wood D.E., Lu J., Langmead B. Improved metagenomic analysis with Kraken 2 // Genome Biology. 2019. V. 20. P. 1–13. https://doi.org/10.1186/s13059-019-1891-0
- Wu P., Wang J., Guo Z., Cheng Y., Wu J. Heavy metals and bacterial community determine resistance genes distribution in agricultural soils surrounding long-term mining area // Appl. Soil Ecol. 2024. V. 202. P. 105581. https://doi.org/10.1016/j.apsoil.2024.105581
- Yang Z.N., Liu Z.S., Wang K.H., Liang Z.L., Abdugheni R., Huang Y., Liu, S.J. Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites // Environ. Sci. Technol. 2022. V. 10. P. 100169. https://doi.org/10.1016/j.ese.2022.100169
- Yin H., Niu J., Ren Y., Cong J., Zhang X., Fan F., et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination // Sci. Rep. 2015. V. 5. P. 14266.
- Zelaya-Molina L.X., Guerra-Camacho J.E., Ortiz-Alvarez J.M., Vigueras-Cortés J.M., Villa-Tanaca L., Hernández-Rodríguez C. Plant growth-promoting and heavy metal-resistant Priestia and Bacillus strains associated with pioneer plants from mine tailings // Arch. Microbiol. 2023. V. 205. 9. P. 318. https://doi.org/10.1007/s00203-023-03650-5
- Zeng X. Y., Li S. W., Leng Y., and Kang X. H. Structural and functional responses of bacterial and fungal communities to multiple heavy metal exposure in arid loess // Sci. Total Environ. 2020. V. 723. P. 138081. https://doi.org/10.1016/j.scitotenv.2020.138081
- Zhao X., Huang J., Lu J., and Sun Y. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine // Ecotoxicol. Environ. Saf. 2019. V. 170. P. 218–226. https://doi.org/10.1016/j.ecoenv.2018.11.136
- Zhong X., Chen Z., Ding K., Liu W.S., Baker A.J., Fei Y.H., Qiu R. Heavy metal contamination affects the core microbiome and assembly processes in metal mine soils across Eastern China // J. Hazard. Mater. 2023. V. 443. P. 130241. https://doi.org/10.1016/j.jhazmat.2022.130241
- Zhou Y., Lan W., Yang F., Zhou Q., Liu M., Li J., Xiao Y. Invasive Amaranthus spp. for heavy metal phytoremediation: Investigations of cadmium and lead accumulation and soil microbial community in three zinc mining area // Ecotoxicol. Environ. Saf. 2024. V. 285. P. 117040. https://doi.org/10.1016/j.ecoenv.2024.117040
- Zhou Y., Qin Y., Liu X., Feng Z., Zhu H., Yao Q. Soil Bacterial Function Associated with Stylo (Legume) and Bahiagrass (Grass) is affected more strongly by soil chemical property than by bacterial community composition // Front. Microbiol. 2019. V. 10. P. 798. https://doi.org/10.3389/fmicb.2019.00798
- Žibret G, Gosar M, Miler M, Alijagić J. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies // Land Degrad Dev. 2018. V. 29. Р. 4457–4470. http://dx.doi.org/10.1002/ldr.3198
Supplementary files
