Peculiarities of primary soil formation in the conditions of the southern tundra of the European North-East of Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper deals with the influence of hydromorphism (excessive soil moisture content) and soil texture (loams, sands, gravel-sand deposits) on the processes of initial pedogenesis in the conditions of south shrub tundra of the European North-East of Russia. The authors analyzed the morphological structure of soil profiles, and the principal physical-chemical properties of mature and young soils. In 4(5)–6 decades of self-regenerative succession on the territory of quarries for extraction of common minerals, the soil formation and vegetation cover development processes are interrelated and determined by the properties of soil-forming rocks. The drained soils of quarries are found for: isolation of organic horizons (soil litter), soil density decrease in the upper mineral part of profile, tendency to redistribution of silt fraction along soil profile, Fe and Al compounds in the profile. Loams have poor signs of surface gleying, gravel-sand soils – clay formation and accumulation of Al and Fe compounds in the layer under soil litter, sands – podzol formation. Excessively moisture soils are characterized by the development of peat formation processes, humus migration and gley formation. The processes of initial pedogenesis in bioclimatic conditions of tundra are slowed down. This is evidenced by: (1) weak manifestation of zonal signs of soil formation in profiles of young soils; (2) low organic carbon accumulation rate in soil profile. On sands and gravel-sand deposits, the carbon accumulation rate within the 0–20 cm soil layer in automorphic conditions is less than 0.1 t/(ha yr), in semihydromorphic conditions – 0.25–0.30 t/ (ha yr), in hydromorphic conditions – 0.42 t/(ha yr). On loams, this parameter attains 0.28, 0.31 and 0.61 t/ (ha yr), respectively.

About the authors

I. A. Likhanova

Institute of Biology, Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Email: likhanova@ib.komisc.ru
Syktyvkar, 167982 Russia

S. V. Deneva

Institute of Biology, Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Syktyvkar, 167982 Russia

E. M. Lapteva

Institute of Biology, Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Syktyvkar, 167982 Russia

References

  1. Абакумов Е.В., Гагарина Э.И. Почвообразование в посттехногенных экосистемах карьеров на северо-западе Русской равнины. СПб.: Изд-во СПбГУ, 2006. 208 с.
  2. Аксенова Ю.В., Гиндемит А.М. Влияние рельефа на показатели плодородия почв // Земледелие. 2024. № 2. С. 19–24. https://doi.org/10.24412/0044-3913-2024-2-19-24.
  3. Арчегова И.Б., Цыпанова А.Н. К вопросу о миграции железа и органического вещества в почвах Восточно-европейской тундры (Воркута) // Химия, генезис и картография почв. М.: Наука, 1968. С. 32–36.
  4. Атлас почв Республики Коми. Сыктывкар: Коми республиканская типография, 2010. 356 c.
  5. Водяницкий Ю.Н. Диагностика переувлажненных минеральных почв. М.: Почв. институт им. В.В. Докучаева, 2008. 83 с.
  6. Восстановление земель на Крайнем Севере. Сыктывкар: Коми НЦ УрО РАН, 2000. 152 с.
  7. Данилов И.Д. Водораздельные песчано-галечные отложения Воркутского района // Кайнозойский покров Большеземельской тундры. Изд-во МГУ. 1963. С. 192–210.
  8. Евдокимова Г.А., Мозгова Н.П. Микроорганизмы тундровых и лесных подзолов Кольского Севера. Апатиты: Кольский НЦ РАН, 2001. 184 с.
  9. Забоева И.В. Почвы и земельные ресурсы Коми АССР. Сыктывкар: Коми книжное издательство, 1975. 344 с.
  10. Зайдельман Ф.Р. Процесс глееобразования и его роль в формировании почв. M.: Изд-во МГУ, 1998. 316 с.
  11. Игнатенко И.В. Почвы восточноевропейской тундры и лесотундры. М.: Наука, 1979. 280 с.
  12. Каверин Д.А., Пастухов А.В., Новаковский А.Б. Особенности современного температурного режима почвогрунтов на участке пересечения бугристого торфяника автодорогой на юге Большеземельской тундры // Криосфера Земли. 2020. № 1. С. 23–33. https://doi.org/10.21782/KZ1560-7496-2020-1(23-33)
  13. Махонина Г.И. Экологические аспекты почвообразования в техногенных экосистемах Урала. Екатеринбург: Изд-во Урал. ун-та, 2003. 356 с.
  14. Орлов Д.С., Бирюкова О.Н., Суханова Н.И. Органическое вещество почв Российской Федерации. М.: Наука, 1996. 258 с.
  15. Оценка баланса углерода на севере России: прошлое, настоящее и будущее. Сыктывкар: ИБ Коми НЦ УрО РАН, 2013. 64 с.
  16. Полевой определитель почв России. М.: Почв. ин-т им. В.В. Докучаева, 2008. 182 с.
  17. Пономарева В.В. Теория подзолообразовательного процесса. М.: Наука. 1964. 379 с.
  18. Попов А.И. Отчет о производстве геологической съемки масштаба 1 : 50000 в Воркутинском промышленном районе на территории листов Q-41-20А,Б,В,Г и Q-41-2 А,Б,В,Г. М., 1963.
  19. Природная среда тундры в условиях открытой разработки угля (на примере Юньягинского месторождения). Сыктывкар: Республиканский экологический центр по изучению и охране восточноевропейских тундр. 2005. 245 с.
  20. Таргульян В.О. Почвообразование и выветривание в холодных гумидных областях. М.: Наука, 1971. 268 с.
  21. Теория и практика химического анализа почв. M.: ГЕОС, 2006. 400 с.
  22. Gurkova E.A., Sokolov D.A. Influence of texture on humus accumulation in soils of dry steppes of Tuva // Eurasian Soil Science. 2022. V. 55. P. 90–101. https://doi.org/10.1134/S1064229322010069
  23. Hugelius G., Tarnocai C., Broll G., Canadell J.G., Kuhry P., Swanson D.K. The northern circumpolar soil carbon database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions // Earth Syst. Sci. Data. 2013. 5. P. 3–13. https://doi.org/10.5194/essd-5-3-2013
  24. IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
  25. Lichter J. Rates of Weathering and chemical depletion in surface soils across a chronosequence of lake michigan sand dunes // Geoderma. 1998. V. 85. P. 255–282. https://doi.org/10.1016/S0016-7061(98)00026-3
  26. Likhanova I.A., Deneva S.V., Kholopov Y.V., Kuznetsova E.G., Shakhtarova O.V., Lapteva E.M. The Effect of Hydromorphism on soils and soil organic matter during the primary succession processes of forest vegetation on ancient alluvial sands of the European North-East of Russia // Forests. 2022. V. 13. 230. https://doi.org/10.3390/f13020230
  27. Likhanova I.A., Kuznetsova E.G., Kholopov Yu.V., Deneva S.V., Lapteva E.M. Soil formation on loamy deposits in technogenic landscapes of the taiga zone in the northeast of the European part of Russia // Eurasian Soil Science, 2024. V. 57. P. 363–379. https://doi.org/10.1134/S1064229323603128
  28. Lisetskii F. Perspectives in Soil Organic Carbon Storage: From a Global Perspective to the Possibilities of Landscapes // Environ Anal Eco stud. 2023. V. 10. P. 1194–1197. https://doi.org/10.31031/EAES. 2023.10.000748
  29. Lundstrom U.S., van Breemen N., Bain D. The Podzolization Process. A Review // Geoderma. 2000. V. 94. Р. 91–107. https://doi.org/10.1016/S0016-7061(99)00036-1
  30. Mazhitova G.G., Kazakov V.G., Lopatin E.V., Virtanen T. Geographic Information System and Soil Carbon Estimates for the Usa River Basin, Komi Republic // Eurasian Soil Science. 2003. V. 36. P. 123–135.
  31. Mergelov N.S., Targulian V.O. Accumulation of organic matter in the mineral layers of permafrost-affected soils of coastal lowlands in East Siberia // Eurasian Soil Science. 2011. V. 44. P. 249–260. https://doi.org/10.1134/S1064229311030069
  32. Oberman N.G, Mazhitova G.G. Permafrost mapping of Northeast European Russia based on period of the climatic warming of 1970-1995. // Norsk Geografisk Tidskrift-Norwegian J. Geography. 2003. V. 57. P. 111–120. https://doi.org/10.1080/00291950310001513
  33. Pastukhov A.V., Kaverin D.A. Soil carbon pools in tundra and taiga ecosystems of Northeastern Europe // Eurasian Soil Science. 2013. V. 46(9), P. 958–967. https://doi.org/10.1134/S1064229313070077
  34. Patova E.N., Kulyugina E.E., Deneva S.V. Processes of natural soil and vegetation recovery on a worked-out open pit coal mine (Bol’shezemel’skaya tundra) // Russ. J. Ecology. 2016. V. 47. P. 228–233.
  35. Shamrikova E.V., Vanchikova E.V., Kondratenok B.M., Lapteva E.M., Kostrova S.N. Problems and limitations of the dichromatometric method for measuring soil organic matter content: a review // Eurasian Soil Science. 2022. V. 55. P. 861–867. https://doi.org/10.1134/s1064229322070092
  36. Sokolov D.A., Androkhanov V.A., Abakumov E.V. Soil formation in technogenic landscapes: trends, results, and representation in the current classifications (review) // Tomsk State Univ. J. Biol. 2021. V. 56. P. 6–32. https://doi.org/10.17223/19988591/56/1
  37. Tarnocai C., Canadell J., Mazhitova G., Schuur E. A.G., Kuhry P., Zimov, S. Soil Organic carbon stocks in the northern circumpolar permafrost region // Global Biogeochem. Cy. 2009. V. 23. GB2023. https://doi.org/10.1029/2008GB003327
  38. Vanchikova E.V., Lapteva E.M., Vasilyeva N.A. Kondratenok B.M. Shamrikova E.V. Metrological aspects of studying the particle size distribution of soils according to the kachinskii method // Eurasian Soil Science. 2024. V. 57. P. 1176–1193. https://doi.org/10.1134/S1064229324600490

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».