Experimental geophysical detection of spatial and temporal variability of urban soil properties
- Authors: Bricheva S.S.1,2, Shilov P.M.3, Yurchenko A.Y.2, Tarasova M.A.1,2, Matasov V.M.4,5
-
Affiliations:
- Lomonosov Moscow State University
- Institute of Geography of the Russian Academy of Sciences
- Dokuchaev Soil Science Institute
- High school of economics
- RUDN University
- Issue: No 6 (2025)
- Pages: 813-829
- Section: SOIL PHYSICS
- URL: https://journals.rcsi.science/0032-180X/article/view/295107
- DOI: https://doi.org/10.31857/S0032180X25060053
- EDN: https://elibrary.ru/ATFURA
- ID: 295107
Cite item
Abstract
The high variability of properties in urban soils and the abundance of anthropogenic inclusions that interfere with the propagation of electromagnetic fields are the reasons why they are seldom studied by geophysics. At the same time, geophysics is the efficient and fast way to diagnose soil structure and dynamics without affecting the function of the place, which is crucial when working in the city. In order to conduct a geophysical study of soils in the city, it is necessary to find out experimentally the relationship of electromagnetic properties with soil texture, moisture content, organic matter content, volume density of solid mineral matter and some other characteristics of soils. The purpose of our study was geophysical detection of spatial and temporal variation in urban soil properties using a lawn in Moscow as an example. Along with classical methods of soil description in reference pits and boreholes, we used ground-penetrating radar, electrical resistivity tomography and electromagnetic induction methods in different seasons. To improve the accuracy of interpretation of geophysical data we analysed the physical properties of soil horizons: particle size and water content, as well as electromagnetic parameters: complex dielectric permittivity and electrical resistivity. The integrated approach allowed to identify soil boundaries with the coefficient of determination R2 = 0.54–0.88 and an error of 10 cm, to give their interpretation and study the seasonal dynamics of electromagnetic properties indirectly related to soil moisture.
Full Text

About the authors
S. S. Bricheva
Lomonosov Moscow State University; Institute of Geography of the Russian Academy of Sciences
Author for correspondence.
Email: bricheva@igras.ru
ORCID iD: 0000-0003-1897-3719
Russian Federation, Moscow, 119991; Moscow, 119017
P. M. Shilov
Dokuchaev Soil Science Institute
Email: bricheva@igras.ru
Russian Federation, Moscow, 119017
A. Yu. Yurchenko
Institute of Geography of the Russian Academy of Sciences
Email: bricheva@igras.ru
Russian Federation, Moscow, 119017
M. A. Tarasova
Lomonosov Moscow State University; Institute of Geography of the Russian Academy of Sciences
Email: bricheva@igras.ru
Russian Federation, Moscow, 119991; Moscow, 119017
V. M. Matasov
High school of economics; RUDN University
Email: bricheva@igras.ru
Russian Federation, Moscow, 109028; Moscow, 117198
References
- Владов М.Л., Судакова М.С. Георадиолокация. От физических основ до перспективных направлений. М.: ГЕОС, 2017. 240 с.
- Еремеев А.И., Шипилов С.Э., Балзовский Е.В., Васильева М.А. Измерение электрофизических характеристик жидких и сыпучих материалов с использованием коаксиальной ячейки // Сб. тез. IX Междунар. научно-практ. конф. “Информационно-измерительная техника и технологии”. Томск, 2018. С. 31–32.
- Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
- Мамонтов В.Г. Общее почвоведение. М.: КНОРУС, 2023. 554 с.
- Поздняков А.И., Елисеев П.И. Зависимости удельного электрического сопротивления от некоторых свойств антропогенно-преобразованных легких почв агроландшафтов гумидной зоны // Вестник ОГУ. 2012. № 10. С. 98–104.
- Поздняков А.И., Позднякова Л.А., Позднякова А.Д. Стационарные электрические поля в почвах. М.: КМК Scientific Press LTD, 1996. 358 с.
- Рязанцев П.А., Бахмет О.Н. Использование электроразведочных методов для картирования почвенных неоднородностей // Почвоведение. 2020. № 5. С. 535–546. https://doi.org/10.31857/S0032180X20050123
- Рязанцев П.А., Кабонен А.В., Родионов А.И. Определение архитектоники корневой системы деревьев методом георадиолокации // Вестник ТГУ. Биол. 2020. № 51. С. 179–204. https://doi.org/10.17223/19988591/51/10
- Старовойтов А.В. Интерпретация георадиолокационных данных. М.: КДУ; Добросвет, 2023. 258 с.
- Якубовский Ю.В., Ренард И.В. Электроразведка. М.: Недра, 1991. 357 с.
- Bobrov P.P., Kroshka E.S., Rodionova O.V. The effect of shape and sizes of particles of wet quartz powders on complex dielectric permittivity in the frequency range of 10 kHz–10 GHz // J. Phys.: Conf. Ser. 2021. V. 2140. P. 012004. https://doi.org/10.1088/1742-6596/2140/1/012004
- Boudreault J.-P., Dubé J.-S., Chouteau M., Winiarski T., Hardy É. Geophysical characterization of contaminated urban fills // Eng. Geol. 2010. V. 116. P. 196–206. https://doi.org/10.1016/j.enggeo.2010.09.002
- Friedman S.P. Soil properties influencing apparent electrical conductivity: A review // Comput. Electron. Agric. 2005. V. 46. P. 45–70. https://doi.org/10.1016/j.compag.2004.11.001
- Garré S., Hyndman D., Mary B., Werban U. Geophysics conquering new territories: The rise of “agrogeophysics” // VZJ. 2021. V. 20. P. e20115. https://doi.org/10.1002/vzj2.20115
- Howard J.L., Orlicki K.M. Effects of anthropogenic particles on the chemical and geophysical properties of urban soils, Detroit, Michigan // Soil Sci. 2015. V. 180. P. 154–166. https://doi.org/10.1097/SS. 0000000000000122
- Huang J., Ramamoorthy P., McBratney A.B., Bramley H. Soil water extraction monitored per plot across a field experiment using repeated electromagnetic induction surveys // Soil Syst. 2018. V. 2. P. 11. https://doi.org/10.3390/soilsystems2010011
- IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports V. 106. FAO, Rome. 216 p.
- Lehmann A., Stahr K. Nature and significance of anthropogenic urban soils // J. Soils Sedim. 2007. V. 7. P. 247–260. https://doi.org/10.1065/jss2007.06.235
- Martini E., Werban U., Zacharias S., Pohle M., Dietrich P., Wollschläger U. Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network // Hydrol. Earth Syst. Sci. 2017. V. 21. P. 495–513. https://doi.org/10.5194/hess-21-495-2017
- Moghadas D., Jadoon K.Z., McCabe M.F. Spatiotemporal monitoring of soil moisture from EMI data using DCT-based Bayesian inference and neural network // J. Appl. Geophys. 2019. V. 169. P. 226–238. https://doi.org/10.1016/j.jappgeo.2019.07.004
- Owenier F., Hornung J., Hinderer M. Substrate-sensitive relationships of dielectric permittivity and water content: implications for moisture sounding // Near Surf. Geophys. 2018. V. 16. P. 128–152. https://doi.org/10.3997/1873-0604.2017050
- Pathirana S., Lambot S., Krishnapillai M., Cheema M., Smeaton C., Galagedara L. Ground-Penetrating Radar and Electromagnetic Induction: Challenges and Opportunities in Agriculture // Rem. Sens. 2023. V. 15. P. 2932. https://doi.org/10.3390/rs15112932
- Pawlik L., Kasprzak M. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT) // Geomorph. 2017. V. 300. P. 1–12. https://doi.org/10.1016/j.geomorph.2017.10.002
- Pozdnyakova L., Pozdnyakov A., Zhang R. Application of geophysical methods to evaluate hydrology and soil properties in urban areas // Urban Water. 2001. V. 3. P. 205–216.
- Pozdnyakova L.A., Trubin A.Yu., Orunbaev S., Manstein Yu.A., Umarova A.B. In-Field Assessment of Soil Salinity and Water Content with Electrical Geophysics // Moscow Univ. Soil Sci. Bull. 2023. V. 78. P. 451–60. https://doi.org/10.3103/S0147687423050034
- Ruan W., Liu B., Liu H., Dong H., Sui Y. Ground Penetrating Radar (GPR) Identification Method for Agricultural Soil Stratification in a Typical Mollisols Area of Northeast China // Chinese Geograph. Sci. 2023. V. 33. P. 664–678. https://doi.org/10.1007/s11769-023-1358-9
- Ryazantsev P.A., Hartemink A.E., Bakhmet O.N. Delineation and description of soil horizons using ground-penetrating radar for soils under boreal forest in Central Karelia (Russia) // Catena. 2022. V. 214. P. 106285. https://doi.org/10.1016/j.catena.2022.106285
- Saneiyan S., Ntarlagiannis D., Werkema D. D., Ustra A. Geophysical methods for monitoring soil stabilization processes // J. Appl. Geophys. 2018. V. 148. P. 234–244.
- Satriani A., Loperte A., Proto M., Bavusi M. Building damage caused by tree roots: laboratory experiments of GPR and ERT surveys // Adv. Geosci. 2010. V. 24. P. 133–137. https://doi.org/10.5194/adgeo-24-133-2010
- Stroganova M., Myagkova A., Prokof’ieva T., Skvortsova I. Soils of Moscow and Urban Environment. M.: PAIMS, 1998. 178 p. https://istina.msu.ru/publications/book/1400986/
- Zeyliger A., Chinilin A., Ermolaeva O. Spatial interpolation of gravimetric soil moisture using EM38-mk induction and ensemble machine learning (case study from dry steppe zone in Volgograd region) // Sens. 2022. V. 22. P. 6153. https://doi.org/10.3390/s22166153
- Zhang M., Feng X., Bano M., Xing H., Wang T., Liang W., Zhou H., Dong Z., An Y., Zhang Y. Review of Ground Penetrating Radar Applications for Water Dynamics Studies in Unsaturated Zone // Rem. Sens. 2022. V. 14. P. 5993. https://doi.org/10.3390/rs14235993
Supplementary files
