Experimental geophysical detection of spatial and temporal variability of urban soil properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The high variability of properties in urban soils and the abundance of anthropogenic inclusions that interfere with the propagation of electromagnetic fields are the reasons why they are seldom studied by geophysics. At the same time, geophysics is the efficient and fast way to diagnose soil structure and dynamics without affecting the function of the place, which is crucial when working in the city. In order to conduct a geophysical study of soils in the city, it is necessary to find out experimentally the relationship of electromagnetic properties with soil texture, moisture content, organic matter content, volume density of solid mineral matter and some other characteristics of soils. The purpose of our study was geophysical detection of spatial and temporal variation in urban soil properties using a lawn in Moscow as an example. Along with classical methods of soil description in reference pits and boreholes, we used ground-penetrating radar, electrical resistivity tomography and electromagnetic induction methods in different seasons. To improve the accuracy of interpretation of geophysical data we analysed the physical properties of soil horizons: particle size and water content, as well as electromagnetic parameters: complex dielectric permittivity and electrical resistivity. The integrated approach allowed to identify soil boundaries with the coefficient of determination R2 = 0.54–0.88 and an error of 10 cm, to give their interpretation and study the seasonal dynamics of electromagnetic properties indirectly related to soil moisture.

Full Text

Restricted Access

About the authors

S. S. Bricheva

Lomonosov Moscow State University; Institute of Geography of the Russian Academy of Sciences

Author for correspondence.
Email: bricheva@igras.ru
ORCID iD: 0000-0003-1897-3719
Russian Federation, Moscow, 119991; Moscow, 119017

P. M. Shilov

Dokuchaev Soil Science Institute

Email: bricheva@igras.ru
Russian Federation, Moscow, 119017

A. Yu. Yurchenko

Institute of Geography of the Russian Academy of Sciences

Email: bricheva@igras.ru
Russian Federation, Moscow, 119017

M. A. Tarasova

Lomonosov Moscow State University; Institute of Geography of the Russian Academy of Sciences

Email: bricheva@igras.ru
Russian Federation, Moscow, 119991; Moscow, 119017

V. M. Matasov

High school of economics; RUDN University

Email: bricheva@igras.ru
Russian Federation, Moscow, 109028; Moscow, 117198

References

  1. Владов М.Л., Судакова М.С. Георадиолокация. От физических основ до перспективных направлений. М.: ГЕОС, 2017. 240 с.
  2. Еремеев А.И., Шипилов С.Э., Балзовский Е.В., Васильева М.А. Измерение электрофизических характеристик жидких и сыпучих материалов с использованием коаксиальной ячейки // Сб. тез. IX Междунар. научно-практ. конф. “Информационно-измерительная техника и технологии”. Томск, 2018. С. 31–32.
  3. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  4. Мамонтов В.Г. Общее почвоведение. М.: КНОРУС, 2023. 554 с.
  5. Поздняков А.И., Елисеев П.И. Зависимости удельного электрического сопротивления от некоторых свойств антропогенно-преобразованных легких почв агроландшафтов гумидной зоны // Вестник ОГУ. 2012. № 10. С. 98–104.
  6. Поздняков А.И., Позднякова Л.А., Позднякова А.Д. Стационарные электрические поля в почвах. М.: КМК Scientific Press LTD, 1996. 358 с.
  7. Рязанцев П.А., Бахмет О.Н. Использование электроразведочных методов для картирования почвенных неоднородностей // Почвоведение. 2020. № 5. С. 535–546. https://doi.org/10.31857/S0032180X20050123
  8. Рязанцев П.А., Кабонен А.В., Родионов А.И. Определение архитектоники корневой системы деревьев методом георадиолокации // Вестник ТГУ. Биол. 2020. № 51. С. 179–204. https://doi.org/10.17223/19988591/51/10
  9. Старовойтов А.В. Интерпретация георадиолокационных данных. М.: КДУ; Добросвет, 2023. 258 с.
  10. Якубовский Ю.В., Ренард И.В. Электроразведка. М.: Недра, 1991. 357 с.
  11. Bobrov P.P., Kroshka E.S., Rodionova O.V. The effect of shape and sizes of particles of wet quartz powders on complex dielectric permittivity in the frequency range of 10 kHz–10 GHz // J. Phys.: Conf. Ser. 2021. V. 2140. P. 012004. https://doi.org/10.1088/1742-6596/2140/1/012004
  12. Boudreault J.-P., Dubé J.-S., Chouteau M., Winiarski T., Hardy É. Geophysical characterization of contaminated urban fills // Eng. Geol. 2010. V. 116. P. 196–206. https://doi.org/10.1016/j.enggeo.2010.09.002
  13. Friedman S.P. Soil properties influencing apparent electrical conductivity: A review // Comput. Electron. Agric. 2005. V. 46. P. 45–70. https://doi.org/10.1016/j.compag.2004.11.001
  14. Garré S., Hyndman D., Mary B., Werban U. Geophysics conquering new territories: The rise of “agrogeophysics” // VZJ. 2021. V. 20. P. e20115. https://doi.org/10.1002/vzj2.20115
  15. Howard J.L., Orlicki K.M. Effects of anthropogenic particles on the chemical and geophysical properties of urban soils, Detroit, Michigan // Soil Sci. 2015. V. 180. P. 154–166. https://doi.org/10.1097/SS. 0000000000000122
  16. Huang J., Ramamoorthy P., McBratney A.B., Bramley H. Soil water extraction monitored per plot across a field experiment using repeated electromagnetic induction surveys // Soil Syst. 2018. V. 2. P. 11. https://doi.org/10.3390/soilsystems2010011
  17. IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports V. 106. FAO, Rome. 216 p.
  18. Lehmann A., Stahr K. Nature and significance of anthropogenic urban soils // J. Soils Sedim. 2007. V. 7. P. 247–260. https://doi.org/10.1065/jss2007.06.235
  19. Martini E., Werban U., Zacharias S., Pohle M., Dietrich P., Wollschläger U. Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network // Hydrol. Earth Syst. Sci. 2017. V. 21. P. 495–513. https://doi.org/10.5194/hess-21-495-2017
  20. Moghadas D., Jadoon K.Z., McCabe M.F. Spatiotemporal monitoring of soil moisture from EMI data using DCT-based Bayesian inference and neural network // J. Appl. Geophys. 2019. V. 169. P. 226–238. https://doi.org/10.1016/j.jappgeo.2019.07.004
  21. Owenier F., Hornung J., Hinderer M. Substrate-sensitive relationships of dielectric permittivity and water content: implications for moisture sounding // Near Surf. Geophys. 2018. V. 16. P. 128–152. https://doi.org/10.3997/1873-0604.2017050
  22. Pathirana S., Lambot S., Krishnapillai M., Cheema M., Smeaton C., Galagedara L. Ground-Penetrating Radar and Electromagnetic Induction: Challenges and Opportunities in Agriculture // Rem. Sens. 2023. V. 15. P. 2932. https://doi.org/10.3390/rs15112932
  23. Pawlik L., Kasprzak M. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT) // Geomorph. 2017. V. 300. P. 1–12. https://doi.org/10.1016/j.geomorph.2017.10.002
  24. Pozdnyakova L., Pozdnyakov A., Zhang R. Application of geophysical methods to evaluate hydrology and soil properties in urban areas // Urban Water. 2001. V. 3. P. 205–216.
  25. Pozdnyakova L.A., Trubin A.Yu., Orunbaev S., Manstein Yu.A., Umarova A.B. In-Field Assessment of Soil Salinity and Water Content with Electrical Geophysics // Moscow Univ. Soil Sci. Bull. 2023. V. 78. P. 451–60. https://doi.org/10.3103/S0147687423050034
  26. Ruan W., Liu B., Liu H., Dong H., Sui Y. Ground Penetrating Radar (GPR) Identification Method for Agricultural Soil Stratification in a Typical Mollisols Area of Northeast China // Chinese Geograph. Sci. 2023. V. 33. P. 664–678. https://doi.org/10.1007/s11769-023-1358-9
  27. Ryazantsev P.A., Hartemink A.E., Bakhmet O.N. Delineation and description of soil horizons using ground-penetrating radar for soils under boreal forest in Central Karelia (Russia) // Catena. 2022. V. 214. P. 106285. https://doi.org/10.1016/j.catena.2022.106285
  28. Saneiyan S., Ntarlagiannis D., Werkema D. D., Ustra A. Geophysical methods for monitoring soil stabilization processes // J. Appl. Geophys. 2018. V. 148. P. 234–244.
  29. Satriani A., Loperte A., Proto M., Bavusi M. Building damage caused by tree roots: laboratory experiments of GPR and ERT surveys // Adv. Geosci. 2010. V. 24. P. 133–137. https://doi.org/10.5194/adgeo-24-133-2010
  30. Stroganova M., Myagkova A., Prokof’ieva T., Skvortsova I. Soils of Moscow and Urban Environment. M.: PAIMS, 1998. 178 p. https://istina.msu.ru/publications/book/1400986/
  31. Zeyliger A., Chinilin A., Ermolaeva O. Spatial interpolation of gravimetric soil moisture using EM38-mk induction and ensemble machine learning (case study from dry steppe zone in Volgograd region) // Sens. 2022. V. 22. P. 6153. https://doi.org/10.3390/s22166153
  32. Zhang M., Feng X., Bano M., Xing H., Wang T., Liang W., Zhou H., Dong Z., An Y., Zhang Y. Review of Ground Penetrating Radar Applications for Water Dynamics Studies in Unsaturated Zone // Rem. Sens. 2022. V. 14. P. 5993. https://doi.org/10.3390/rs14235993

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map of factual material: 1 - site boundaries; 2 - ground-penetrating radar profiles (August 2023), survey lines using the induction electrical profiling method; 3 - ground-penetrating radar profiles, April 2024; 4 - electrical resistivity tomography profiles: electrode pitch 1 m; 5 - electrode pitch 0.5 m; 6 - utilities; 7 - wells; 8 - reference sections.

Download (1MB)
3. Fig. 2. Results of laboratory measurements of the content of physical clay (particles <0.01 mm), permittivity in samples from boreholes 1 and 2 and specific electrical resistance using the VES method (a); GPR profile pr05 with the designation of the position of boreholes, selected GPR complexes (Roman numerals) and the boundaries between them (b).

Download (836KB)
4. Fig. 3. Surface relief based on laser scanning data (a); morphology of the boundary between georadar complexes I and II. The dashed line indicates the position of the power supply cable taking into account the width of the trench and backfill (b).

Download (686KB)
5. Fig. 4. Seasonal dynamics of specific electrical resistance (SER) according to electrical resistivity tomography data; 1 – boundary of georadar complexes I and II (Fig. 2b); 2 – boundary below which practically no seasonal changes in SER are observed.

Download (1MB)
6. Fig. 5. Seasonal variability of electrical conductivity according to induction electrical profiling data (a) and specific electrical resistance according to electrical resistivity tomography data (b).

Download (1MB)
7. Supplementary Material
Download (587KB)
8. Fig. S1. Morphological structure of soils according to the field description.
Download (485KB)
9. Fig. S2. Comparison of GPR images obtained along the pr13 profile in different seasons. The values of the travel time of the reflected signal t, velocity V and dielectric permittivity (ε) are indicated in the figure.
Download (6MB)
10. Fig. S3. Seasonal dynamics from GPR data: comparison of profiles pr09 (a) and pr13 (b) in different seasons. Roman numerals indicate GPR complexes and boundaries between them.
Download (3MB)
11. Fig.S4
Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».