Sorption and desorption of benzo[a]pyrene by soils of the coastal zone of Taganrog Bay, Russia
- Authors: Dudnikova T.S.1, Minkina T.M.1, Vasilyeva G.K.2, Pinsky D.L.2, Sushkova S.N.1, Shuvaev E.G.1, Nemtseva A.A.1
-
Affiliations:
- Academy of Biology and Biotechnology of Ivanovsky Southern Federal University
- Institute of Physico-Chemical and Biological Problems in Soil Science of the Russian Academy of Sciences
- Issue: No 6 (2025)
- Pages: 785-801
- Section: SOIL CHEMISTRY
- URL: https://journals.rcsi.science/0032-180X/article/view/295102
- DOI: https://doi.org/10.31857/S0032180X25060036
- EDN: https://elibrary.ru/ATNVCB
- ID: 295102
Cite item
Abstract
In a model experiment, the sorption–desorption of benzo(a)pyrene (BaP), the most hazardous representative of PAHs was studied by samples of ordinary carbonate chernozem, alluvial meadow saturated and alluvial meadow saturated layered soils taken from different horizons. BaP desorption was studied using water-soluble organic matter (WOM) isolated from the same soils. It was shown that the Dubinin–Radushkevich model best describes the adsorption isotherms in comparison with the Langmuir, Freundlich and Henry models. This indicates a predominantly multilayer nature of adsorption and volumetric filling of the micropores of the studied soils with BaP. The isotherms of BaP desorption from the saturated soils by WOM solutions have a shape close to linear or parabolic. The strength of the bond of sorbed BaP in humus soil horizons is higher that in mineral ones and naturally decreases with a decrease in the content of organic matter. It was found that the sorption capacity of soils with respect to BaP decreases in the following series: ordinary carbonate chernozem > alluvial meadow saturated > alluvial meadow saturated layered. At the same time, the degree of desorption by soil increases with an decrease in the content of organic carbon in it and with an increase in the initial concentration of the pollutant in the solution during the soil saturation.
Full Text

About the authors
T. S. Dudnikova
Academy of Biology and Biotechnology of Ivanovsky Southern Federal University
Email: annemceva@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
T. M. Minkina
Academy of Biology and Biotechnology of Ivanovsky Southern Federal University
Email: annemceva@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
G. K. Vasilyeva
Institute of Physico-Chemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Email: annemceva@sfedu.ru
Russian Federation, Moscow region, Pushchino, 142290
D. L. Pinsky
Institute of Physico-Chemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Email: annemceva@sfedu.ru
Russian Federation, Moscow region, Pushchino, 142290
S. N. Sushkova
Academy of Biology and Biotechnology of Ivanovsky Southern Federal University
Email: annemceva@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
E. G. Shuvaev
Academy of Biology and Biotechnology of Ivanovsky Southern Federal University
Email: annemceva@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
A. A. Nemtseva
Academy of Biology and Biotechnology of Ivanovsky Southern Federal University
Author for correspondence.
Email: annemceva@sfedu.ru
Russian Federation, Rostov-on-Don, 344090
References
- Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.
- Воробьева Л.А. Теория и практика химического анализа почв. М.: ГЕОС, 2006. 400 с.
- Геннадиев А.Н., Пиковский Ю.И. Карты устойчивости почв к загрязнению нефтепродуктами и полициклическими ароматическими углеводородами: метод и опыт составления // Почвоведение. 2007. № 1. С. 80–92.
- Геннадиев А.Н., Пиковский Ю.И., Цибарт А.С., Смирнова М.А. Углеводороды в почвах: происхождение, состав, поведение (обзор) // Почвоведение. 2015. № 10. С. 1195–1209. https://doi.org/10.7868/S0032180X15100020
- Классификация и диагностика почв СССР. М.: Колос, 1977. 224 с.
- Парфит Г., Рочестер К. Адсорбция из растворов на поверхностях твердых тел / Пер. с англ. Тарасевича Б.Н., под ред. Лыгина В.И. М.: Мир, 1987. 235 с.
- Перминова И.В. Анализ, классификация и прогноз свойств гумусовых кислот. Дис. дис. … докт. хим. наук, 2000.
- ПНД Ф 16.1:2.2:2.3:3.62-09. Методика выполнения измерений массовых долей полициклических ароматических углеводородов в почвах, донных отложениях, осадках сточных вод и отходах производства и потребления методом высокоэффективной жидкостной хроматографии.
- ПНД Ф 14.1:2:4.70-96. Количественный химический анализ вод. Методика измерений массовых концентраций полициклических ароматических углеводородов в питьевых, природных и сточных водах методом высокоэффективной жидкостной хроматографии.
- Aigberua A.O., Ekubo A.T., Inengite A.K., Izah S.C. Evaluation of total hydrocarbon content and polycyclic aromatic hydrocarbon in an oil spill contaminated soil in Rumuolukwu community in Niger Delta // J. Environ. Treat. Tech. 2016. V. 4. № 4. P. 130–142.
- Al-Ghouti M.A., Da’ana D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review // J. Hazard. Mater. 2020. V. 393. P. 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
- Ali M., Song X., Ding D., Wang Q., Zhang Z., Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: challenges and enhancement strategies // Environ. Poll. 2022. V. 295. P. 118686. https://doi.org/10.1016/j.envpol.2021.118686
- Bayard R., Barna L., Mahjoub B., Gourdon R. Influence of the presence of PAHs and coal tar on naphthalene sorption in soils // J. Contam. Hydrol. 2000. V. 46. P. 61–80. https://doi.org/10.1016/S0169-7722(00)00125-X
- Campisi D., Lamberts T., Dzade N.Y., Martinazzo R., Ten Kate I.L., Tielens A.G. Adsorption of polycyclic aromatic hydrocarbons and C60 onto forsterite: C–H bond activation by the schottky vacancy // ACS Earth Space Chem. 2022. V. 6. https://pubs.acs.org/doi/10.1021/acsearthspacechem.2c00084.
- Cao X., Pang H., Yang G. Sorption behaviour of norfloxacin on marine sediments // J. Soils Sediments. 2015. V. 15. P. 1635–1643. https://doi.org/10.1007/s11368-015-1124-4
- Cheng H., Hu E., Hu Y. Impact of mineral micropores on transport and fate of organic contaminants: A review // J. Contam. Hydrol. 2012. V. 129. P. 80–90. https://doi.org/10.1016/j.jconhyd.2011.09.008
- Dai C., Han Y., Duan Y., Lai X., Fu R., Liu S., Leong H.K., Tu Ya., Zhou L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments // Environ. Res. 2022. V. 205. P. 112423. https://doi.org/10.1016/j.envres.2021.112423
- Diagboya P.N., Olu-Owolabi B.I., Dikio E.D., Adebowale K.O. Concentration-dependent and simultaneous sorption and desorption of pyrene and fluorene on major soil minerals in sub-Saharan Africa // Appl. Clay Sci. 2018. V. 153. P. 257–264. https://doi.org/10.1016/j.clay.2017.11.037
- Dudnikova T., Minkina T., Sushkova S., Barbashev A., Antonenko E., Konstantinova E., Shuvaev E., Nevidomskaya D., Ivantsov A., Bakoeva G., Gorbunova M. Background Content of Polycyclic Aromatic Hydrocarbons during Monitoring of Natural and Anthropogenically Transformed Landscapes in the Coastal Area Soils // Water. 2023. V. 15. P. 2424. https://doi.org/10.3390/w15132424
- Dudnikova T., Minkina T., Sushkova S., Barbashev A., Antonenko E., Bakoeva G., Shuvaev E., Mandzhieva S., Litvinov Yu., Chaplygin V., Deryabkina I. Features of the polycyclic aromatic hydrocarbon’s spatial distribution in the soils of the Don River delta // Environ. Geochem. Health. 2023b. V. 45. P. 9267–9280. https://doi.org/10.1007/s10653-022-01281-1
- Dudnikova T., Minkina T., Sushkova S., Barbashev A., Antonenko E., Shuvaev E., Nemtseva A., Maksimov A., Litvinov Yu., Nevidomskaya D., Mandzhieva S., Gülser C., Kızılkaya R. Profile distribution of polycyclic aromatic hydrocarbons in coastal soils of the Lower Don and Taganrog Bay, Russia // Eurasian J. Soil Sci. 2024. V. 13. P. 111–124. https://doi.org/10.18393/ejss.1403723
- Ferrara L., Trifuoggi M., Toscanesi M., Donadio C., Barra D., Aiello G., Arienzo M. Source identification and eco-risk assessment of polycyclic aromatic hydrocarbons in the sediments of seawaters facing the former steel plant ILVA, Naples, Italy // Reg. Stud. Mar. Sci. 2020. V. 35. https://doi.org/101097. 10.1016/j.rsma.2020.101097
- Gao Y., Xiong W., Ling W., Wang X., Li Q. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils // J. Hazard. Mater. 2007. V. 140. P. 138–144. https://doi.org/10.1016/j.jhazmat.2006.06.053
- Gennadiev A.N., Tsibart A.S. Pyrogenic polycyclic aromatic hydrocarbons in soils of reserved and anthropogenically modified areas: factors and features of accumulation // Eurasian Soil Sci. 2013. V. 46. P. 28–36. https://doi.org/10.1134/S106422931301002X
- Guo X., Luo L., Ma Y., Zhang S. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters // J. Hazard. Mater. 2010. V. 173. P. 130–136. https://doi.org/10.1016/j.jhazmat.2009.08.065
- Hamid S., Yaseen A., Kamili A.N., Yatoo A.M. Pollution in aquatic environs: sources and consequences. Bioremediation and Biotechnology. Springer, Cham, 2020. V. 4. P. 21–38.
- Hobson J.P. Physical Adsorption Isotherms Extending from Ultrahigh Vacuum to Vapor Pressure // J. Phys. Chem. 1969. V. 73. P. 2720–2727. https://doi.org/10.1021/j100842a045
- Huang W., McDowell W.H., Zou X., Ruan H., Wang J., Ma Z. Qualitative differences in headwater stream dissolved organic matter and riparian water-extractable soil organic matter under four different vegetation types along an altitudinal gradient in the Wuyi Mountains of China // Appl. Geochem. 2015. V. 52. P. 67–75.
- Hwang S., Ramirez N., Cutright T.J., Ju L.K. The role of soil properties in pyrene sorption and desorption // Water, Air, Soil Pollut. 2003. V. 143. P. 65–80. https://doi.org/10.1023/a:1022863015709
- IARC. List of classifications, volumes 1-123 // IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon: International Agency for Research on Cancer, 2020. https://monographs.iarc.fr/list-of-classifications-volumes/
- Jin J., Sun K., Wang Z., Han L., Pan Z., Wu F., Liu X., Zhao Ye., Xing B. Characterization and phthalate esters sorption of organic matter fractions isolated from soils and sediments // Environ. Pollut. 2015. V. 206. P. 24–31. https://doi.org/10.1016/j.envpol.2015.06.031
- Kasimov N.S., Bezberdaya L.A., Vlasov D.V., Lychagin M.Y. Metals, metalloids, and benzo[a]pyrene in PM 10 particles of soils and road dust of Alushta city // Eurasian Soil Sci. 2019. V. 52. P. 1608–1621. https://doi.org/10.1134/S1064229319120068
- Konstantinova E.Yu., Minkina T.M., Nevidomskaya D., Lychagin M., Bezberdaya L.A., Burachevskaya M.V., Rajput V.D., Zamulina I., Bauer T.V., Mandzhieva S.S. Potentially toxic elements in urban soils of the coastal city of the Sea of Azov: Levels, sources, pollution and risk assessment // Environ. Res. 2024. V. 252. P. 119080. https://doi.org/10.1016/j.envres.2024.119080
- Kopinke F.D., Georgi A., Mackenzie K. Sorption of pyrene to dissolved humic substances and related model polymers. 1. Structure− property correlation // Environ. Sci. Technol. 2001. V. 35. P. 2536–2542. https://doi.org/10.1021/es000233q
- Krauss M., Wilcke W. Predicting Soil− water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls by desorption with Methanol− water mixtures at different temperatures // Environ. Sci. Technol. 2001. V. 35. P. 2319–2325. https://doi.org/10.1021/es001616r
- Kumar M., Bolan N.S., Hoang S.A., Sawarkar A.D., Jasemizad T., Gao B., Keerthanan S., Padhye L.P., Singh L., Kumar S., Vithanage M., Li Ya., Zhang M., Kirkham M.B., Vinu A., Rinklebe, J. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: to immobilize, mobilize, or degrade? // J. Hazard. Mater. 2021. V. 420. P. 126534. https://doi.org/10.1016/j.jhazmat.2021.126534
- Lamichhane S., Krishna K.B., Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review // Chemosphere. 2016. V. 148. P. 336–353. https://doi.org/10.1016/j.chemosphere.2016.01.036
- Li F., Zhang Y., Wang S., Li G., Yue X., Zhong D., Chen Ch., Shen K. Insight into ex-situ thermal desorption of soils contaminated with petroleum via carbon number-based fraction approach // Chem. Eng. J. 2020. V. 385. P. 123946. https://doi.org/10.1016/j.cej.2019.123946
- Luthy R.G., Aiken G.R., Brusseau M.L., Cunningham S.D., Gschwend P.M., Pignatello J.J., Reinhard M., Traina S.J., Weber Jr. W.J., Westall J.C. Sequestration of hydrophobic organic contaminants by geosorbents // Environ. Sci. Technol. 1997. V. 31. P. 3341–3347. https://doi.org/10.1021/es970512m
- Mantel S., Dondeyne S., Deckers S. World reference base for soil resources (WRB). Goss, Margaret Oliver Encyclopedia of Soils in the Environment. Elsevier, 2023. P. 206–217.
- Minkina T., Fedorenko G., Nevidomskaya D., Konstantinova E., Pol’shina T., Fedorenko A., Chaplygin V., Mandzhieva S., Dudnikova T., Hassan T. The Morphological and functional organization of cattails Typha laxmannii Lepech. and Typha australis Schum. and Thonn. under soil pollution by potentially toxic elements // Water. 2021. V. 13. P. 227. https://doi.org/10.3390/w13020227
- Moradi-Rad R., Omidi L., Kakooei H., Golbabaei F., Hassani H., Abedin-Loo R., Azam K. Adsorption of polycyclic aromatic hydrocarbons on activated carbons: kinetic and isotherm curve modeling // Int. J. Occup. Hyg. 2014. V. 6. P. 43–49.
- Nikiforova E., Kosheleva N., Kasimov N. Accumulation of polycyclic aromatic hydrocarbons in sealed soils and their environmental hazard for eastern Moscow // Polycyclic Aromat. Compd. 2021. V. 41. P. 1767–1783. https://doi.org/10.1080/10406638.2019.1696380
- Pignatello J.J. Dynamic interactions of natural organic matter and organic compounds // J. Soils Sediments. 2012. V. 12. P. 1241–1256. https://doi.org/10.1007/s11368-012-0490-4
- Piwowarska D., Kiedrzyńska E. Xenobiotics as a contemporary threat to surface waters // Ecohydrol. Hydrobiol. 2022. V. 22 P. 337–354. https://doi.org/10.1016/j.ecohyd.2021.09.003
- Pokrovskiy V.A., Bogillo V.I. Adsorption and chemisorption of organic pollutants on solid aerosol surfaces // Stud. Surf. Sci. Catal. 1999. V. 120. P. 571–634. https://doi.org/10.1016/S0167-2991(99)80373-5
- Prikhodko V.D., Kazeev K.S., Vilkova V.V., Nizhelskiy M.S., Kolesnikov S.I. Changes in enzyme activity in postpyrogenic soils (physical model experiment) // Eurasian Soil Sci. 2023. V. 56. P. 101–109. https://doi.org/10.31857/S0032180X22600743
- Pulikova E., Ivanov F., Gorovtsov A., Dudnikova T., Zinchenko V., Minkina T., Mandzhieva S., Barahov A., Sherbakov A., Sushkova S. Microbiological status of natural and anthropogenic so15ils of the Taganrog Bay coast at different levels of combined pollution with heavy metals and PAHs // Environ. Geochem. Health. 2023. V. 45. P. 9373–9390. https://doi.org/10.1007/s10653-022-01405-7
- Qu Y., Gong Y., Ma J., Wei H., Liu Q., Liu L., Wu H., Yang Sh., Chen Y. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China // Environ. Pollut. 2020. V. 260. P. 114016. https://doi.org/10.1016/j.envpol.2020.114016
- Ren X., Zeng G., Tang L., Wang J., Wan J., Liu Y., Yu J., Yi H., Ye Sh., Deng R. Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil // Sci. Total Environ. 2018. V. 610. P. 1154–1163. https://doi.org/10.1016/j.scitotenv.2017.08.089
- Rhodes A.H., Riding M.J., McAllister L.E., Lee K., Semple K.T. Influence of activated charcoal on desorption kinetics and biodegradation of phenanthrene in soil // Environ. Sci. Technol. 2012. V. 46. № 22. P. 12445–12451. https://doi.org/10.1021/es3025098
- Rivas F.J. Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments // J. Hazard. Mater. 2006. V. 138. P. 234–251. https://doi.org/10.1016/j.jhazmat.2006.07.048
- Shen Q., Yu H., Cao Y., Guo Z., Hu L., Duan L., Sun X., Lin T. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the East China marginal seas: Significance of the terrestrial input and shelf mud deposition // Mar. Pollut. Bull. 2024. V. 199. P. 115920. https://doi.org/10.1016/j.marpolbul.2023.115920
- Syomin V., Sikorski A., Bastrop R., Koehler N., Stradomsky B., Fomina E., Matishov D. The invasion of the genus Marenzelleria (Polychaeta: Spionidae) into the Don River mouth and the Taganrog Bay: Morphological and genetic study // J. Mar. Biolog. Assoc. U.K. 2017. V. 97. № 5. P. 975–984. https://doi.org/10.1017/S0025315417001114
- US Environmental Protection Agency. Integrated Risk Information System (IRIS). Washington, DC: Office of Research and Development, 2020. https://cfpub.epa.gov/ncea/iris_drafts/Ato Z.cfm
- Vidal C.B., Barros A.L., Moura C.P., De Lima A.C., Dias F.S., Vasconcellos L.C., Fechine P.B.A., Nascimento R.F. Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica // J. Colloid Interface Sci. 2011. V. 357. P. 466–473. https://doi.org/10.1016/j.jcis.2011.02.013
- Wang B., Zeng D., Chen Y., Belzile N., Bai Y., Zhu J., Shu J., Chen S. Adsorption behaviors of phenanthrene and bisphenol A in purple paddy soils amended with straw-derived DOM in the West Sichuan Plain of China // Ecotoxicol. Environ. Saf. 2019. V. 169. P. 737–746. https://doi.org/10.1016/j.ecoenv.2018.11.096
- Xu H., Qu X., Li H., Gu C., Zhu D. Sorption of Tetracycline to Varying‐Sized Montmorillonite Fractions // J. Environ. Qual. 2014. V. 43. P. 2079–2085. https://doi.org/10.2134/jeq2014.04.0182
- Yang L., Jin M., Tong C., Xie S. Study of dynamic sorption and desorption of polycyclic aromatic hydrocarbons in silty-clay soil // J. Hazard. Mater. 2013. V. 244. P. 77–85. https://doi.org/10.1016/j.jhazmat.2012.11.029
- Yu H., Huang G.H., An C.J., Wei J. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil–water system // J. Hazard. Mater. 2011. V. 190. P. 883–890. https://doi.org/10.1016/j.jhazmat.2011.04.026
- Yuan M., Tong S., Zhao S., Jia C.Q. Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon // J. Hazard. Mater. 2010. V. 181. P. 1115–1120. https://doi.org/10.1016/j.jhazmat.2010.05.130
- Zhang X., Wu Y., Hu S., Lu C., Yao H. Responses of kinetics and capacity of phenanthrene sorption on sediments to soil organic matter releasing // Environ. Sci. Poll. Res. 2014. V. 21. P. 8271–8283. https://doi.org/10.1007/s11356-014-2750-x
Supplementary files
