Permanganate-Oxidizable Carbon in Humus Horizons of Soils in the European Territory of Russia
- Authors: Timofeeva M.V.1, Yudina A.V.1
-
Affiliations:
- Dokuchaev Soil Science Institute
- Issue: No 4 (2025)
- Pages: 514-527
- Section: SOIL CHEMISTRY
- URL: https://journals.rcsi.science/0032-180X/article/view/291742
- DOI: https://doi.org/10.31857/S0032180X25040066
- EDN: https://elibrary.ru/CMEYFD
- ID: 291742
Cite item
Abstract
The paper provides a detailed analysis of the soil permanganate-oxidized carbon (POХС) method. The purpose of this work was to describe the range of POXC values in the humus horizons of soils of different land uses of the European territory of Russia and to assess the possibility of using it as an indicator of the state of soil organic matter. The work objectives included: a) the selection of the corresponding soil mass for the analysis; and b) determination of the range of POXC values in soddy-podzolic soils (Retisols), gray soils (Greyzemic Phaeozems), and chernozems (Haplic Chernozems) of different land uses of the European territory of Russia. For soils with the carbon content from 1.6 to 4.7% a negative nonlinear relationship between the POXC values and the sample mass was established: with an increase in the sample mass in the range of 0.5–7.0 g, the average POXC decreases by 1.5–3.0 times for both natural and agricultural soils. The most suitable mass for determining POXC is 2.5 g, since it allows determining POXС for soils with the greatest variation in the total carbon content. The absolute values of POХС for three types of soils in the European Russia were from 358 to 1040 mg/kg, relative content varies from 1.2 to 4.4%. The considered permanganate-oxidizable carbon method makes it possible to assess the pool of TOC, probably most easily metabolized by soil microbiota. Low analytical variability, sensitivity of the observed values of permanganate-oxidizable carbon (POC) to soil type and land use allows us to consider this parameter as a promising indicator of soil health assessment.
About the authors
M. V. Timofeeva
Dokuchaev Soil Science Institute
Author for correspondence.
Email: timofeeva_mv@esoil.ru
Russian Federation, Moscow, 119017
A. V. Yudina
Dokuchaev Soil Science Institute
Email: timofeeva_mv@esoil.ru
Russian Federation, Moscow, 119017
References
- Заварзина А.Г., Данченко Н.Н., Демин В.В., Артемьева З. С., Когут Б. М. Гуминовые вещества – гипотезы и реальность (обзор) // Почвоведение. 2021. № 12. С. 1449–1480. https://doi.org/10.31857/S0032180X21120169
- Казеев К.Ш., Колесников С.И., Акименко Ю.В., Даденко Е.В. Методы биодиагностики наземных экосистем. Ростов-на-Дону: Изд-во Южного федерального ун-та, 2016. 355 с.
- Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
- Курманбаев А.А., Сундет Т.Р. Концепция почвенного здоровья и современные индикаторы здоровья почв // Почвоведение и агрохимия. 2023. № 2. С. 91–106. https://doi.org/10.51886/1999-740Х_2023_2_91
- Орлов Д.С. Эколого-геохимические проблемы гумусообразования // Научн. nр. Почв. ин-та им. В.В. Докучаева. М., 1990. С. 5–15.
- Полевой определитель почв. М.: Почв. ин-т. им. В.В. Докучаева, 2008. 183 с.
- Прохоров А.А. Характеристика методов выделения фракций почвенного органического вещества и их использование для оценки гумусового состояния почв // АгроЭкоИнфо: Электронный научно-производственный журнал. 2022. № 6.
- Семенов В.М., Иванникова Л.А., Тулина А.С. Стабилизация органического вещества в почве // Агрохимия. 2009. № 10. С. 77–96.
- Семенов В.М., Когут Б.М. Почвенное органическое вещество. М.: ГЕОС, 2015. 233 c.
- Холодов В.А., Фарходов Ю.Р., Ярославцева Н.В., Айдиев А.Ю., Лазарев В.И., Ильин Б.С., Иванов А.Л, Куликова Н.А. Термолабильное и термостабильное органическое вещество черноземов разного землепользования // Почвоведение. 2020. №. 8. С. 970–982. https://doi.org/10.31857/S0032180X20080080
- Haynes R.J. Labile organic matter fractions as central components of the quality of agricultural soils: an overview advances in Agronomy. S.D.: Academic Press, 2005. C. 221–268.
- Bell M.J., Moody P.W., Yo S.A., Connolly R.D. Using active fractions of soil organic matter as indicators of the sustainability of ferrosol farming systems // Aust. J. Soil Res. 1999. V. 2. C. 279–287. https://doi.org/10.1071/S98064
- Blair N. Impact of cultivation and sugar-cane green trash management on carbon fractions and aggregate stability for a Chromic Luvisol in Queensland, Australia // Soil Till. Res. 2000. V. 55. P. 183–191. https://doi.org/10.1016/S0167-1987(00)00113-6
- Blair G.J., Lefroy R.D., Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems // Aust. J. Agric. Res. 1995. V. 7. P. 1459–1466. https://doi.org/10.1071/AR9951459
- Bongiorno G., Bünemann E.K., Oguejiofor C.U., Meier J., Gort G., Comans R., Mäder P., Brussaard L., de Goede R. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe // Ecol. Indic. 2019. V. 99. P. 38–50. https://doi.org/10.1016/j.ecolind.2018.12.008
- Chen H., Hou R., Gong Y., Li H., Fan M., Kuzyakov Y. Effects of 11 years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China // Soil Till. Res. 2009. V. 1. P. 85–94. https://doi.org/10.1016/j.still.2009.09.009
- Christy I., Moore A., Myrold D., Kleber M. A mechanistic inquiry into the applicability of permanganate oxidizable carbon as a soil health indicator // Soil Sci. Soc. Am. J. 2023. V. 5. P. 1083–1095. https://doi.org/10.1002/saj2.20569
- Culman S.W., Snapp S.S., Freeman M.A., Schipanski M.E., Beniston J., Lal R., Drinkwater L.E., Franzluebbers A.J., et al. Permanganate oxidizable carbon reflects a processed soil fraction that is sensitive to management // Soil Sci. Soc. Am. J. 2012. V. 2. P. 494–504. https://doi.org/10.2136/sssaj2011.0286
- Fine A.K., van Es H.M., Schindelbeck R.R. Statistics, scoring functions, and regional analysis of a comprehensive soil health database // Soil Sci. Soc. Am. J. 2017. V. 3. P. 589–601. https://doi.org/10.2136/sssaj2016.09.0286
- Graham M.H., Haynes R.J., Meyer J.H. Soil organic matter content and quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa // Soil Biol. Biochem. 2002. V. 34. P. 93–102. https://doi.org/10.1016/S0038-0717(01)00160-2
- Gregorich E.G., Carter M.R., Angers D.A., Monreal C., Ellert B.H. Towards a minimum data set to assess soil organic matter quality in agricultural soils // Can. J. Soil Sci. 1994. V. 74. P. 367–385. https://doi.org/10.4141/cjss94-051
- Gruver J. Evaluating the sensitivity and linearity of a permanganate-oxidizable carbon method // Commun. Soil Sci. Plant Anal. 2015. V. 4. P. 490–510. https://doi.org/10.1080/00103624.2014.997387
- Guggenberger G., Zech W., Schulten H.-R. Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions // Org. Geochem. 1994. V. 1. P. 51–66. https://doi.org/10.1016/0146-6380(94)90087-6
- Hartman W.H., Richardson C.J. Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes? // PloS One. 2013. V. 3. P. e57127. https://doi.org/10.1371/journal.pone.0057127
- Huang J., Rinnan Å., Bruun T.B., Engedal T., Bruun S. Identifying the fingerprint of permanganate oxidizable carbon as a measure of labile soil organic carbon using Fourier transform mid-infrared photoacoustic spectroscopy // Eur. J. Soil Sci. 2021. № 4 (72). C. 1831–1841.
- Hurisso T.T., Culman S.W., Horwath W.R., Wade J., Cass D., Beniston J., Bowles T.M., et al. Comparison of permanganate‐oxidizable carbon and mineralizable carbon for assessment of organic matter stabilization and mineralization // Soil Sci. Soc. Am. J. 2016. V. 5. P. 1352–1364. https://doi.org/10.2136/sssaj2016.04.0106
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014 I. soil classification system for naming soils and creating legends for soil maps WRB-2014 // Universitas Nusantara PGRI Kediri. 2017. P. 1–7.
- Jensen J.L., Schjønning P., Watts C.W., Christensen B.T., Peltre C., Munkholm L.J. Relating soil C and organic matter fractions to soil structural stability // Geoderma. 2019. V. 337. P. 834–843. https://doi.org/10.1016/j.geoderma.2018.10.034
- Jones E.J., Hong Y., Pino V., Pauly V., Singh K., Field D., McBratney A.B. Optimising POXC effective sensitivity as a soil indicator in Australian soils // Soil Security. 2023. V. 13. P. 100116. https://doi.org/10.1016/j.soisec.2023.100116
- Lefroy R.D., Blair G.J., Strong W.M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance // Plant Soil. 1993. V. 155. P. 399–402. https://doi.org/10.1007/BF00025067
- Lehmann J., Kleber M. The contentious nature of soil organic matter // Nature. 2015. V. 7580. P. 60–68. https://doi.org/10.1038/nature16069
- Loginow W., Wiśniewski W., Gonet S.S., Cieścińska B.. Fractionation of organic carbon based on susceptibility to oxidation // Pol. J. Soil Sci. 1987. V. 20. P. 47–52.
- Margenot A.J., Calderón F.J., Magrini K.A., Evans R.J. Application of DRIFTS, 13C NMR, and py-MBMS to characterize the effects of soil science oxidation assays on soil organic matter composition in a Mollic Xerofluvent // Appl. Spectrosc. 2017. V. 7. P. 1506–1518. https://doi.org/10.1177/0003702817691776
- Margenot A.J., Wade J., Woodings F.S. The misuse of permanganate as a quantitative measure of soil organic carbon // Agric. Environ. lett. 2024. V. 9. P. e20124. https://doi.org/10.1002/ael2.20124
- Moebius-Clune B.N., Moebius-Clune D.J., Gugino B.K., Idowu O.J., Schindelbeck R.R., Ristow A.J., van Es H.M., et al. Comprehensive assessment of soil health – the Cornell framework. Edition 3.2. Cornell University. Geneva. N.Y., 2016.
- Plaza-Bonilla D., Álvaro-Fuentes J., Cantero-Martínez C. Identifying soil organic carbon fractions sensitive to agricultural management practices // Soil and Tillage Res. 2014. V. 139. P. 19–22. https://doi.org/10.1016/j.still.2014.01.006
- Pulleman M., Wills S., Creamer R., Dick R., Ferguson R., Hooper D., Williams C., Margenot A.J. Soil mass and grind size used for sample homogenization strongly affect permanganate-oxidizable carbon (POXC) values, with implications for its use as a national soil health indicator // Geoderma. 2021. V. 383. P. 114742. https://doi.org/10.1016/j.geoderma.2020.114742
- Rabot E., Wiesmeier M., Schlüter S., Vogel H.J. Soil structure as an indicator of soil functions: A review // Geoderma. 2018. V. 314. P. 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009
- Reinhart K.O., Nichols K.A., Petersen M., Vermeire L.T. Soil aggregate stability was an uncertain predictor of ecosystem functioning in a temperate and semiarid grassland // Ecosphere. 2015. V. 11. P. 1–16. https://doi.org/10.1890/ES15-00056.1
- Romero C.M., Engel R.E., D’Andrilli J., Chen C., Zabinski C., Miller P.R., Wallander R. Patterns of change in permanganate oxidizable soil organic matter from semiarid drylands reflected by absorbance spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry // Org. Geochem. 2018. V. 120. P. 19–30. https://doi.org/10.1016/j.orggeochem.2018.03.005
- Stott D.E. Recommended soil health indicators and associated laboratory procedures. Soil health technical note. 2019. No. 450–03. U.S. Department of Agriculture, Natural Resources Conservation Service. P. 76.
- Sutri M., Shanskiy M., Ivask M., Reintam E. The Assessment of soil quality in contrasting land-use and tillage systems on farm fields with Stagnic Luvisol soil in Estonia // Agriculture (Switzerland). 2022. V. 12. P. 2149. https://doi.org/10.3390/agriculture12122149
- Svedin J.D., Veum K.S., Ransom C.J., Kitchen N.R., Anderson S.H. An identified agronomic interpretation for potassium permanganate oxidizable carbon // Soil Sci. Soc. Am. J. 2023. V. 87. P. 291–308. https://doi.org/10.1002/saj2.20499
- Tatzber M., Schlatter N., Baumgarten A., Dersch G., Körner R., Lehtinen T., Unger G., Mifek E., Spiegel H. KMnO4 determination of active carbon for laboratory routines: Three long-term field experiments in Austria // Soil Res. 2015. V. 2. P. 190–204. https://doi.org/10.1071/SR14200
- Tirol-Padre A., Ladha J.K. Assessing the reliability of permanganate‐oxidizable carbon as an index of soil labile carbon // Soil Sci. Soc. Am. J. 2004. V. 3. P. 969–978. https://doi.org/10.2136/sssaj2004.9690
- USDA Kellogg Soil Survey Laboratory Methods Manual Soil Survey Investigations Report No. 42, Version 6.0. Part 1. Current Methods.
- Wade J., Maltais-Landry G., Lucas D.E., Bongiorno G., Bowles T.M., Calderón F.J., Culman S.W., et al. Assessing the sensitivity and repeatability of permanganate oxidizable carbon as a soil health metric: An interlab comparison across soils // Geoderma. 2020. V. 366. P. 114235. https://doi.org/10.1016/j.geoderma.2020.114235
- Wade J., Li C., Pulleman M.M., Trankina G., Wills S.A., Margenot A.J. To standardize by mass of soil or organic carbon? A comparison of permanganate oxidizable carbon (POXC) assay methods // Geoderma. 2021. V. 404. P. 115392. https://doi.org/10.1016/j.geoderma.2021.115392
- Weil R.R., Islam K.R., Stine M.A., Gruver J.B., Samson-Liebig S.E. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use // Am. J. Altern. Agric. 2003. V. 18. P. 3–17. https://doi.org/10.1079/AJAA200228
- Wickham M.H., Chang W., Wickham M.H. Package “ggplot2”. Create elegant data visualizations using the grammer of graphics. Version. 2016. V. 1. P. 1–89.
- Woodings F.S., Margenot A.J. Revisiting the permanganate oxidizable carbon (POXC) assay assumptions: POXC is lignin sensitive // Agric. Environ. Lett. 2023. V. 8. P. e20108. https://doi.org/10.1002/ael2.20108
Supplementary files
