Soil-agrochemical aspects of remediation of copper-contaminated soil in applying growth-promoting rhizosphere bacteria
- Authors: Shabayev V.P.1, Ostroumov V.E.1
-
Affiliations:
- Institute for Biological Instrumentation of the Russian Academy of Sciences (IBI RAS)
- Issue: No 2 (2025)
- Pages: 320-328
- Section: DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
- URL: https://journals.rcsi.science/0032-180X/article/view/287567
- DOI: https://doi.org/10.31857/S0032180X25020114
- EDN: https://elibrary.ru/COJAKN
- ID: 287567
Cite item
Abstract
Impact of introducing growth-promoting rhizosphere bacteria of genus Pseudomonas on growth and chemical composition of spring wheat plants in artificial contamination with copper nitrate in increased quantity, at rate of 300 mg/kg of humus horizon of agro-gray soil (Luvic Retic Greyzemic Phaeozems (Loamic)) in pot experiment was studied. Applying bacteria P. fluorecens SV20, P. fluorecens SV21 and P. putida SV23 reduced significantly copper toxicity on plants in first half of growing season. Increasing plant resistance to application of copper nitrate in using bacteria was due to increase in their biophilic elements N, P, K, Ca, Mg, Fe, Mn and Zn uptake from contaminated soil without significant changes in concentrations of most elements in plants and in soil medium reaction. Positive effect of bacteria was also associated with increase in copper uptake by roots – increase in barrier ability of root system towards metal. Bacteria increased presence of copper in soil mainly in specifically sorbed and associated with ferruginous minerals fractions, and, to a lesser extent, in fraction associated with organic matter, and decrease metal in residual fraction firmly associated with clay minerals in extraction by sequential selective extractions method. Bacteria enhanced phytoextraction – purification of contaminated soil, increasing copper uptake by plant shoots. Application of bacteria can be recommended in developing strategies for remediation of copper-contaminated soils based on environmentally friendly technologies.
Full Text

About the authors
V. P. Shabayev
Institute for Biological Instrumentation of the Russian Academy of Sciences (IBI RAS)
Author for correspondence.
Email: vpsh@rambler.ru
Institute of Physicochemical and Biological Problems in Soil Science
Russian Federation, Pushchino, 142290V. E. Ostroumov
Institute for Biological Instrumentation of the Russian Academy of Sciences (IBI RAS)
Email: vpsh@rambler.ru
Institute of Physicochemical and Biological Problems in Soil Science
Russian Federation, Pushchino, 142290References
- Алексеев Ю.В. Качество растениеводческой продукции. Л.: Колос, 1978. 256 с.
- Ильин В.Б. Тяжелые металлы и неметаллы в системе почва–растение. Новосибирск: СО РАН, 2012. 220 с.
- Ладонин Д.В. Фракционный состав тяжелых металлов в почвах, загрязненных оксидами и легкорастворимыми солями в модельном эксперименте // Формы соединений тяжелых металлов в техногенно-загрязненных почвах. М.: Изд-во Моск. ун-та, 2019. 312 с.
- Ладонин Д.В., Карпухин М.М. Фракционный состав соединений никеля, меди, цинка и свинца, загрязненных оксидами и растворимыми солями металлов // Почвоведение. 2011. № 8. С. 953–965.
- Олюнина Л.Н., Шабаев В.П. Продуцирование индолил-3-уксусной кислоты ризосферными бактериями рода Pseudomonas в процессе роста // Микробиология. 1996. Т. 65. № 6. С. 813–817.
- Ориентировочно-допустимые концентрации (ОДК) химических веществ в почве. Гигиенические нормативы ГН 2.1.7.2042–06. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2006. 11 с.
- Парубец Ю.С., Карпова Е.А., Ермаков А.А., Шохин В.В. Влияние фосфорных удобрений на состояние цинка и меди в системе “загрязненная почва – растения” // Проблемы агрохимии и экологии. 2012. № 3. С. 9–14.
- Теория и практика химического анализа почв / Под ред. Воробьевой Л.А. М.: ГЕОС, 2006. 400 c.
- Шабаев В.П. Микробиологическая азотфиксация и рост растений при внесении ризосферных микроорганизмов и минеральных удобрений // Почвенные процессы и пространственно-временная организация почв. М.: Наука, 2006. С. 195–211.
- Шабаев В.П., Бочарникова Е.А., Остроумов В.Е. Ремедиация загрязненной кадмием почвы при применении стимулирующих рост растений ризобактерий и природного цеолита // Почвоведение. 2020. № 6. С. 738–750. https://doi.org/10.31857/S0032180X20060118
- Шабаев В.П., Остроумов В.Е. Почвенно-агрохимические аспекты ремедиации загрязненной никелем почвы при применении ростстимулирующих ризосферных бактерий // Почвоведение. 2023. № 2. С. 226–239. https://doi.org/10.31857/S0032180X22600925
- Chandel A.K., Chen H., Sharma H.Ch., Adhikari K., Gao B. Beneficial Microbes for Sustainable Agriculture // Microbes for Sustainable Development and Bioremediation. Raton: CRC Press. 2020. 386 p. https://doi.org/10.1201/9780429275876
- Cruz F.J.R., Ferreira R.L. da Cruz, Conceicao S.S. et al. Copper toxicity in plants: Nutritional, physiological and biochemical aspects // Adv. Plant Mechanisms. 2022. 370 р. https://doi.org/10.5772/intechopen.105212
- Dutta P., Muthukrishnan G., Sabarinathan K.G. KG., Rajakumar D. Plant growth-promoting rhizobacteria (PGPR) and its mechanisms against plant diseases for sustainable agriculture and better productivity // Biocell. 2022. V. 46. № 8. P. 1843–1859. https://doi.org/10.32604/biocell.2022.019291
- Dorjey S., Dolkar D., Sharma R. Plant growth promoting rhizobacteria Pseudomonas: A review // Int. J. Current Microbiol. Appl. Sci. 2017. V. 6. № 7. P. 1335–1344. https://doi.org/10.20546/ijcmas.2017.607.160
- Kabata-Pendias A. Trace Elements in Soils and Plants. 4th Edition. 2010. Boca Raton: CRC Press. 548 p. https://doi.org/10.1201/b10158
- Kumar A., Tripti, Voropaeva O., Maleva M., Panikovskaya K, Borisova G., Rajkumar M., Bruno L.B. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus // Chemosphere. 2021. V. 266. P. 128983. https://doi.org/10.1016/j.chemosphere.2020.128983
- Mishra J., Singh R., Arora N.K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Mini review article. Sec. Microbial Symbioses // Front. Microbiol. 2017. 8. https://doi.org/10.3389/fmicb.2017.01706
- Nadeem S., Naveed M., Ayyub M., Khan M.Y., Ahmad M., Zahir Z.A. Potential, limitations and future prospects of Pseudomonas spp. for sustainable agriculture and environment: A Review // Soil Environ. 2016. V. 35. № 2. P. 106–145. https://www.researchgate.net/publication/309202604
- Nadeem N., Asif R., Ayyub S., Salman S., Shafique F., Ali Q., Malik A. Role of rhizobacteria in phytoremediation of heavy metals. Review Article // Biol. Clin. Sci. Res. J. 2020. V. 2020. P. e035. https://doi.org/10.47264/bcsrj0101035
- Ojha S., Jaiswal S., Thakur P., Mishra S.K. Bioremediation techniques for heavy metal and metalloid removal from polluted lands: a review // Int. J. Sci. Technol. 2023. V. 20. P. 10591–10612. https://doi.org/10.1007/s13762-022-04502-3
- Pattnaik S., Mohapatra B., Gupta A. Plant-growth promoting microbe mediated uptake of essential nutrients (Fe, P, K) for crop stress management: microbe–soil–plant continuum. Review article // Front. Agron. 2021. V. 3. https://doi.org/10.3389/fagro.2021.689972
- Rasafi T.El., Haouas A., Tallou A. et al. Recent progress on emerging technologies for trace elements-contaminated soil remediation. Review // Chemosphere. 2023. V. 341. P. 140121. https://doi.org/10.1016/j.chemosphere.2023.140121
- Ren X.M., Guo S.J., Tian W. et al. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Сu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil // Front. Microbiol. 2019. V. 10. P. 1455. https://doi.org/10.3389/fmicb.2019.01455
- Saha L., Tiwari J., Bauddh K., Ma Y. Recent developments in microbe-plant-based bioremediation for tackling heavy metal-polluted soils. Review article // Front. Microbiol. 2021. V. 12. 731723. https://doi.org/10.3389/fmicb.2021.731723
- Saxena G., Purchase D., Mulla S.I., Saratale G.D., Bharagava R.N. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, fields studies, sustainability issues and future prospects // Rev. Environ. Contamin. Toxicol. 2020. V. 249 P. 71–131. https://doi.org/10.1007/398_2019_24
- Seraj F., Rahman T. Heavy metals, metalloids, their toxic effect and living systems // Am. J. Plant Sci. 2018. V. 9. № 13. P. 2626–2643. https://doi.org/10.4236/ajps2018.913191
- Singh S.N., Goyal S.K., Singh S.R. Bioremediation of heavy metals polluted soils and their effect on plants // Agriways. 2015. V. 3. № 1. P. 19–24. https://www.researchgate.net/publication/353446009_Bioremediation_of_Heavy_Metals_Polluted_Soil (обращение 16 апреля 2024).
- Singh P.K. Effect of soil polluted by heavy metals: Effect on plants, bioremediation and adoptive evolution in plants // Plant Res. Soil Pollut. 2020. P. 89–102. https://doi.org/10.1007/978-981-15-4964-9_5
- Srivastava R., Singh A. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture // Intern. J. Agr. Sci. Res. 2017. V. 7. № 4. P. 505–510. https://doi.org/10.24247/ijasraug201765
- Ullah, A., Hung S., Munis M.F.H., Fahad S., Yang X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review // Environ. Exp. Bot. 2015. V. 117. P. 28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001
Supplementary files
