Soil erosion factors in the macroregion of the European part of Russia: modeling, geoinformation mapping and spatial analysis
- Authors: Yermolaev O.P.1, Mukharamova S.S.1, Maltsev K.A.1, Polyakova A.R.1, Saveliev A.A.1
-
Affiliations:
- Institute of Environmental Sciences, Kazan Federal University
- Issue: No 2 (2025)
- Pages: 281–300
- Section: SOIL EROSION
- URL: https://journals.rcsi.science/0032-180X/article/view/287566
- DOI: https://doi.org/10.31857/S0032180X25020097
- EDN: https://elibrary.ru/COOELO
- ID: 287566
Cite item
Abstract
A new quantitative assessment of the factors of soil erosion and its intensity from storm and melt runoff was carried out in most of the European part of Russia for 2014–2019. Assessment is based on the universal soil loss equation USLE/RUSLE with spatial resolution 250 m. The results are generalized and cartographically presented in the geosystems of small river basins. A new approach has been developed for modeling the rainfall erosivity (R-factor) using intra-daily precipitation data. A rainfall erosivity model was developed using the GAM method and explained 87% of the data variability. A new methodology has been developed for detecting the cover management factor (C-factor) based on Earth remote sensing data. New results on the C-factor were obtained based on multi-temporal satellite data on vegetation density, spectral vegetation indices and phenological metrics. Snow Water Equivalent data from the Copernicus program was used as current data on water reserves in snow to determine the intensity of soil erosion from melt runoff. The annual intensity of soil erosion (from rain and melt runoff) throughout the entire territory is insignificant: on average 0.6 t/ha per year, median 0.02 t/ha per year. On the plowed lands of the basins, these values are higher: 2.4 t/ha per year and 1.6 t/ha per year, respectively.
Full Text

About the authors
O. P. Yermolaev
Institute of Environmental Sciences, Kazan Federal University
Email: zakieva.alika@mail.ru
Russian Federation, Kazan, 420008
S. S. Mukharamova
Institute of Environmental Sciences, Kazan Federal University
Email: zakieva.alika@mail.ru
Russian Federation, Kazan, 420008
K. A. Maltsev
Institute of Environmental Sciences, Kazan Federal University
Email: zakieva.alika@mail.ru
Russian Federation, Kazan, 420008
A. R. Polyakova
Institute of Environmental Sciences, Kazan Federal University
Author for correspondence.
Email: zakieva.alika@mail.ru
Russian Federation, Kazan, 420008
A. A. Saveliev
Institute of Environmental Sciences, Kazan Federal University
Email: zakieva.alika@mail.ru
Russian Federation, Kazan, 420008
References
- Ашаткин И.А., Мальцев К.А., Гайнутдинова Г.Ф., Усманов Б.М., Гафуров А.М., Ганиева А.Ф., Мальцева Т.С., Гиззатуллина Э.Р. Анализ морфометрии рельефа по глобальным ЦМР в пределах южной части Европейской территории России // Учен. зап. Казан. ун-та. Сер. Естеств. науки. 2020. Т. 162. № 4. С. 612–628.
- Барталев С.А., Егоров В.А., Жарко В.О., Лупян Е.А., Плотников Д.Е., Хвостиков С.А., Шабанов Н.В. Спутниковое картографирование растительного покрова России. М.: ИКИ РАН, 2016. 208 с.
- Геопортал “Речные бассейны Европейской России”: http://bassepr.kpfu.ru/ (дата обращения: 15.03.2024).
- Голосов В.Н., Ермолаев О.П. Пространственно-временные закономерности развития современных процессов природно-антропогенной эрозии на Русской равнине / Казань: Изд-во АН РТ. 2019. 372 с.
- Единый государственный реестр почвенных ресурсов России: http://egrpr.esoil.ru/ (дата обращения: 12.03.2024).
- Ермолаев О.П. Новая оценка интенсивности почвенной эрозии на Европейской территории России // Тридцать седьмое пленарное межвузовское координационное совещание по проблеме эрозионных, русловых и устьевых процессов (г. Рязань, 3–7 октября 2022 г.): Доклады и сообщения. М., 2022. С. 15–23.
- Ермолаев О.П., Мальцев К.А. Оценка эрозионного риска для почвенного покрова лесных и лесостепных ландшафтов Среднего Поволжья средствами ГИС-технологий // Учен. зап. Казан. ун-та. Сер. Естеств. науки. 2008. Т. 150. № 4. С. 85–97.
- Кирюхина З.П., Пацукевич З.В. Смываемость пахотных почв // Работа водных потоков. 1987. С. 30–39.
- Кирюхина З.П., Пацукевич З.В. Эродируемость пахотных почв России в период ливневого стока // Почвоведение. 2001. № 9. С. 1140–1146.
- Кирюхина З.П., Пацукевич З.В. Эродируемость почв Европейской части Советского Союза // Вестник МГУ. 1989. № 1. С. 50–57.
- Ларионов Г.А. Эрозия и дефляция почв: основные закономерности и количественные оценки / Москва: Изд-во МГУ. 1993. 198 с.
- Лисецкий Ф.Н., Половинко В.В. Эрозионные катены на земляных фортификационных сооружениях // Геоморфология. 2012. № 2. С. 65–78.
- Лисецкий Ф.Н., Светличный А.А., Черный С.Г. Современные проблемы эрозиоведения. Белгород: Константа. 2012. 456 с.
- Литвин Л.Ф. География эрозии почв сельскохозяйственных земель России. М.: Академкнига, 2002. 256 с.
- Литвин Л.Ф., Кирюхина З.П., Краснов С.Ф., Добровольская Н.Г. География динамики земледельческой эрозии почв на Европейской территории России // Почвоведение. 2017. № 11. С. 1390–1400.
- Мальцев К.А. Анализ качества глобальной цифровой модели рельефа GMTED2010 для оценки эрозионного потенциала (на примере юга Европейской территории России) // Изв. РГО. 2022. Т. 154. № 5–6. С. 112–122. https://doi.org/10.31857/S0869607122050068
- Мальцев К.А., Ермолаев О.П. Потенциальные эрозионные потери почвы на пахотных землях Европейской части России // Почвоведение. 2019. № 12. С. 1502–1512.
- Научно-прикладной справочник по климату СССР. Сер. 3. Многолетние данные. Ч. 4. Влажность, осадки и снежный покров. Л.: Гидрометеоиздат, 1990.
- Национальный атлас России. Т. 2. Природа. Экология / Гл. ред. Котляков В.М. М.: Роскартография, 2007. 495 с.
- Федеральная служба государственной статистики. База данных показателей муниципальных образований: https://rosstat.gov.ru/dbscripts/munst/ (дата обращения: 13.03.2024).
- Федеральная служба по гидрометеорологии и мониторингу окружающей среды: http://meteo.ru/ (дата обращения: 11.03.2024).
- Фридланд В.М. Почвенная карта РСФСР. М.: ГУГУК, 1988.
- Чалов С.Р. Речные наносы в эрозионно-русловых системах. Дис. … д-р. геогр. наук. М., 2021. 358 с.
- Чалов Р.С., Сидорчук А.Ю., Голосов В.Н. Эрозионно-русловые системы. М.: ИНФРА-М., 2017. 698 с.
- Agriculture and Agri-Food Canada Annual Crop Inventory ground truth data. 2021.
- Angulo-Martínez M., Beguería S. Estimating rainfall erosivity from daily precipitation records: A comparison among methods using data from the Ebro Basin (NE Spain) // J. Hydrol. 2009. V. 379. № 1–2. P. 111–121. https://doi.org/10.1016/j.jhydrol.2009.09.051
- Bonilla C.A., Vidal K.L. Rainfall erosivity in Central Chile // J. Hydrol. 2011. V. 410. № 1–2. P. 126–133. https://doi.org/10.1016/j.jhydrol.2011.09.022
- Borrelli P., Alewell C., Alvarez P., Anache J.A.A., Baartman J., Ballabio C., Bezak N. et al. Soil erosion modelling: A global review and statistical analysis // Sci. Total Environ. 2021. V. 780. P. 146494. https://doi.org/10.1016/j.scitotenv.2021.146494
- Borrelli P., Ballabio C., Yang J.E., Robinson D.A., Panagos P. GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion // Sci Data. 2022. V. 9. № 1. P. 406. https://doi.org/10.1038/s41597-022-01489-x
- Borrelli P., Robinson D.A., Fleischer L.R., Lugato E., Ballabio C., Alewell C., Meusburger K. et al. An assessment of the global impact of 21st century land use change on soil erosion // Nat Commun. 2017. V. 8. № 1. P. 2013. https://doi.org/10.1038/s41467-017-02142-7
- Capolongo D., Diodato N., Mannaerts C.M., Piccarreta M., Strobl R.O. Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy) // J. Hydrol. 2008. V. 356. № 1–2. P. 119–130. https://doi.org/10.1016/j.jhydrol.2008.04.002
- Copernicus Digital Elevation Model. https://doi.org/https://doi.org/10.5270/ESA-c5d3d65
- Danielson J.J., Gesch D.B. Global multi-resolution terrain elevation data 2010 (GMTED2010) / Open-File Report 2011–1073. U.S. Geological Survey, Reston, Virginia. 2011.
- De Santos Loureiro N., De Azevedo Coutinho M. A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal // J. Hydrol. 2001. V. 250. № 1–4. P. 12–18. https://doi.org/10.1016/S0022-1694(01)00387-0
- Desmet P.J.J., Govers G.A. GIS-procedure for automatically calculating the USLE LS-factor on topographically complex landscape units // JSWC. 1966. V. 51. № 5. P. 427–433.
- Didan K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061. 2021. https://doi.org/10.5067/MODIS/MOD13Q1.061
- Gafurov A., Mukharamova S., Saveliev A., Yermolaev O. Advancing Agricultural Crop Recognition: The Application of LSTM Networks and Spatial Generalization in Satellite Data Analysis // Agriculture. 2023. V. 13. № 9. P. 1672. https://doi.org/10.3390/agriculture13091672
- Golosov V., Koiter A., Ivanov M., Maltsev K., Gusarov A., Sharifullin A., Radchenko I. Assessment of soil erosion rate trends in two agricultural regions of European Russia for the last 60 years // J. Soils Sediments. 2018. V. 18. № 12. P. 3388–3403. https://doi.org/10.1007/s11368-018-2032-1
- Golosov V.N., Collins A.L., Dobrovolskaya N.G., Bazhenova O.I., Ryzhov Yu.V., Sidorchuk A.Y. Soil loss on the arable lands of the forest-steppe and steppe zones of European Russia and Siberia during the period of intensive agriculture // Geoderma. 2021. V. 381. P. 114678. https://doi.org/10.1016/j.geoderma.2020.114678
- Hastie T., Tibshirani R. Generalized Additive Models // Statist. Sci. 1986. V. 1. № 3. https://doi.org/10.1214/ss/1177013604
- Hawker L., Uhe P., Paulo L., Sosa J., Savage J., Sampson C., Neal J. A 30 m global map of elevation with forests and buildings removed // Environ. Res. Lett. 2022. V. 17. № 2. P. 024016. https://doi.org/10.1088/1748-9326/ac4d4f
- Hochreiter S., Schmidhuber J. Long short-term memory // Neural Computation. 1997. V. 9. № 8. P. 1735–1780
- Ivanov M.A., Mukharamova S.S., Yermolaev O.P., Essuman-Quainoo B. Mapping croplands with a long history of crop cultivation using time series of modis vegetation indices // Uch. Zap. Kazan. Univ. Ser. Estestv. Nauki. 2021. V. 162. № 2. P. 302–313. https://doi.org/10.26907/2542-064X.2020.2.302-313
- Lee S., Wolberg G., Shin S.Y. Scattered data interpolation with multilevel B-splines // IEEE Trans. Visual. Comput. Graphics. 1997. V. 3. № 3. P. 228–244. https://doi.org/10.1109/2945.620490
- Liu Y., Zhao W., Liu Y., Pereira P. Global rainfall erosivity changes between 1980 and 2017 based on an erosivity model using daily precipitation data // Catena. 2020. V. 194. P. 104768. https://doi.org/10.1016/j.catena.2020.104768
- Maltsev K., Yermolaev O. Assessment of soil loss by water erosion in small river basins in Russia // Catena. 2020. V. 195. P. 104726. https://doi.org/10.1016/j.catena.2020.104726
- Melkonian A.K., Willis M.J., Pritchard M.E., Stewart A.J. Recent changes in glacier velocities and thinning at Novaya Zemlya // Remote Sens. Environ. 2016. V. 174. P. 244–257. https://doi.org/10.1016/j.rse.2015.11.001
- Moore I.D., Nieber J.L. Landscape Assessment of Soil Erosion and Nonpoint Source Pollution // JMAS. 1989. V. 55. № 1. P. 18–25.
- Mukharamova S., Saveliev A., Ivanov M., Gafurov A., Yermolaev O. Estimating the Soil Erosion Cover-Management Factor at the European Part of Russia // IJGI. 2021. V. 10. № 10. P. 645. https://doi.org/10.3390/ijgi10100645
- Oliveira P.T.S., Rodrigues D.B.B., Sobrinho T.A., Carvalho D.F.D., Panachuki E. Spatial variability of the rainfall erosive potential in the State of Mato Grosso do Sul, Brazil // Eng. Agríc. 2012. V. 32. № 1. P. 69–79. https://doi.org/10.1590/S0100-69162012000100008
- Oliveira P.T.S., Wendland E., Nearing M.A. Rainfall erosivity in Brazil: A review // Catena. 2013. V. 100. P. 139–147. https://doi.org/10.1016/j.catena.2012.08.006
- Panagos P., Ballabio C., Borrelli P., Meusburger K., Klik A., Rousseva S., Tadić M.P. et al. Rainfall erosivity in Europe // Sci. Total Environ. 2015. V. 511. P. 801–814. https://doi.org/10.1016/j.scitotenv.2015.01.008
- Panagos P., Borrelli P., Meusburger K., Yu B., Klik A., Jae Lim K., Yang J.E. et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records // Sci. Rep. 2017. V. 7. № 1. P. 4175. https://doi.org/10.1038/s41598-017-04282-8
- Panagos P., Borrelli P., Spinoni J., Ballabio C., Meusburger K., Beguería S., Klik A. et al. Monthly Rainfall Erosivity: Conversion Factors for Different Time Resolutions and Regional Assessments // Water. 2016. V. 8. № 4. P. 119. https://doi.org/10.3390/w8040119
- Panagos P., Karydas C.G., Gitas I.Z., Montanarella L. Monthly soil erosion monitoring based on remotely sensed biophysical parameters: a case study in Strymonas river basin towards a functional pan-European service // Int. J. Digit. Earth. 2012. V. 5. № 6. P. 461–487. https://doi.org/10.1080/17538947.2011.587897
- Phinzi K., Ngetar N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review // Int. Soil Water Conserv. Res. 2019. V. 7. P. 27–46. https://doi.org/10.1016/j.iswcr.2018.12.002
- Pulliainen J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations // Remote Sens. Environ. 2006. V. 101. № 2. P. 257–269. https://doi.org/10.1016/j.rse.2006.01.002
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, 2021.
- Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C. Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). U.S. Department of Agriculture, 1997. 403 p.
- Renard K.G., Freimund J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE // J. Hydrol. 1994. V. 157. № 1–4. P. 287–306. https://doi.org/10.1016/0022-1694(94)90110-4
- Renard K.G., Yoder D.C., Lightle D.T., Dabney S.M. Universal Soil Loss Equation and Revised Universal Soil Loss Equation // Handbook of Erosion Modelling / Eds. Morgan R.P.C., Nearing M.A. Wiley, 2010. P. 135–167. https://doi.org/10.1002/9781444328455.ch8
- Richardson C.W., Foster G.R., Wright D.A. Estimation of Erosion Index from Daily Rainfall Amount // Transactions of the ASAE. 1983. V. 26. № 1. P. 0153–0156. https://doi.org/10.13031/2013.33893
- Science documentation: Revised Universal Soil Loss Equation Version 2. USDA–ARS, Washington, DC. 2013.
- Tadono T., Nagai H., Ishida H., Oda F., Naito S., Minakawa K., Iwamoto H. Generation of the 30 m-mesh global digital surface model by ALOS prism // Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016. V. XLI-B4. P. 157–162. https://doi.org/10.5194/isprsarchives-XLI-B4-157-2016
- Takala M., Luojus K., Pulliainen J., Derksen C., Lemmetyinen J., Kärnä J.-P., Koskinen J. et al. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements // Remote Sens. Environ. 2011. V. 115. № 12. P. 3517–3529. https://doi.org/10.1016/j.rse.2011.08.014
- Van Rossum G., Drake F.L. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009.
- Wessel B., Huber M., Wohlfart C., Marschalk U., Kosmann D., Roth A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data // ISPRS J. Photogramm. Remote Sens. 2018. V. 139. P. 171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017
- Wischmeier W.H., Smith D.D. Predicting rainfall erosion losses: A guide to conservation planning. Washington: US Gov. Print. Office, 1978. 537 p.
- Wolfs D., Verger A., Van der Goten R., Sánchez-Zapero J. Copernicus Global Land Operations “Vegetation and Energy” “CGLOPS-1” PRODUCT USER MANUAL Leaf Area Index (LAI) Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) Fraction of green Vegetation Cover (FCover) Collection 300m Version 1.1. 2022.
- Xie Y., Yin S., Liu B., Nearing M.A., Zhao Y. Models for estimating daily rainfall erosivity in China // J. Hydrol. 2016. V. 535. P. 547–558. https://doi.org/10.1016/j.jhydrol.2016.02.020
- Yamazaki D., Ikeshima D., Tawatari R., Yamaguchi T., O’Loughlin F., Neal J.C., Sampson C.C. et al. A high‐accuracy map of global terrain elevations // Geophys. Res. Lett. 2017. V. 44. № 11. P. 5844–5853. https://doi.org/10.1002/2017GL072874
- Yermolaev O.P. Geoinformation mapping of soil erosion in the Middle Volga region // Eurasian Soil Sc. 2017. V. 50. № 1. P. 118–131. https://doi.org/10.1134/S1064229317010070
- Yermolaev O.P., Mukharamova S.S., Maltsev K.A., Ivanov M.A., Ermolaeva P.O., Gayazov A.I., Mozzherin V.V. et al. Geographic Information System and Geoportal “River basins of the European Russia” // IOP Conf. Ser.: Earth Environ. Sci. 2018. V. 107. P. 012108. https://doi.org/10.1088/1755-1315/107/1/012108
- Yin S., Xie Y., Liu B., Nearing M.A. Rainfall erosivity estimation based on rainfall data collected over a range of temporal resolutions // Hydrol. Earth Syst. Sci. 2015. V. 19. № 10. P. 4113–4126. https://doi.org/10.5194/hess-19-4113-2015
- Yin S., Xie Y., Nearing M.A., Wang C. Estimation of rainfall erosivity using 5- to 60-minute fixed-interval rainfall data from China // Catena. 2007. V. 70. № 3. P. 306–312. https://doi.org/10.1016/j.catena.2006.10.011
- Yu B. Rainfall erosivity and its estimation for Australia’s tropics // Soil Res. 1998. V. 36. № 1. P. 143. https://doi.org/10.1071/S97025
- Yu B., Hashim G.M., Eusof Z. Estimating the R-factor with limited rainfall data: A case study from Peninsular Malaysia // J. Soil Water Conserv. 2001. V. 56. № 2. P. 101–105.
- Zhang X., Friedl M., Henebry G. VIIRS/NPP Land Cover Dynamics Yearly L3 Global 500m SIN Grid V001. 2020. https://doi.org/10.5067/VIIRS/VNP22Q2.001
- Zhidkin A.P, Rukhovich D.I, Maltsev K.A Variation of Soil Erosion Estimates Based on Different Maps of Cropland in Belgorod Oblast, Russia // Eurasian Soil Sci. 2024. V. 57. № 4. P. 666–676.
Supplementary files
