Application of machine learning algorithms to classify soil components with different hydrophilicity
- Authors: Sofinskaya O.A.1, Mouraviev F.A.1, Rakonjac D.2,3, Mannapova L.M.1
-
Affiliations:
- Kazan (Volga region) Federal University
- Belarusian State University
- Moscow Institute of Physics and Technology (National Research University)
- Issue: No 2 (2025)
- Pages: 263–280
- Section: SOIL PHYSICS
- URL: https://journals.rcsi.science/0032-180X/article/view/287565
- DOI: https://doi.org/10.31857/S0032180X25020086
- EDN: https://elibrary.ru/COOYQH
- ID: 287565
Cite item
Abstract
The capabilities of the pilot model classifier trained to recognize microbial activity traces on solid surfaces for studying soils and soil-like bodies have been preliminarily assessed. A database of 500 samples described by the authors and in open sources from 1988 to the present was collected for machine learning; among them, 59 samples represented soil horizons, 146 parent rocks and soil-like bodies, as well as rock-forming minerals, accompanying components of soil formation, xenobiotics common in technogenically transformed landscapes of the world. The samples were envolved in the database as options of dispersion, coverage with biofilms and films of other nature, chemical and physical treatment. The array of sample features significant for machine learning included quantiles of the wetting contact angle distribution and generalizing categorical indicators of surface geometry, mineral composition, and state of organic matter. The classification target function was the presence of microbial activity stable traces on a solid surface. Missing data were reconstructed using Monte Carlo procedure and bootstrapping. As a result of numerical experiments on optimizing the machine learning a balanced training dataset containing 1233 pseudo-sample elements was obtained. Six classifier models with parameter variations were trained and evaluated. The most productive classifier, a five-layer neural network with randomly dropout neurons, demonstrated a prediction accuracy of 0.74 and an ROC AUC of 0.80 on the test sample, which is higher than that of simpler and faster classifiers (accuracy and ROC AUC of 0.70). Based on the disagreement between the classifications of a human expert and trained algorithm common feature of samples that are difficult for machine classification were established: with traces of life activity, carbonate, dispersed, which allows one to determine the direction of collecting information to improve the performance of the classifier. The development of an algorithm for recognizing traces of microbial activity is useful for clarifying the mechanisms of biogeochemical and biogeotechnological processes in soils of various origins, including soil formation and terraforming.
Full Text

About the authors
O. A. Sofinskaya
Kazan (Volga region) Federal University
Author for correspondence.
Email: ushik2001@mail.ru
ORCID iD: 0000-0002-8785-4505
Russian Federation, Kazan, 420008
F. A. Mouraviev
Kazan (Volga region) Federal University
Email: ushik2001@mail.ru
Russian Federation, Kazan, 420008
D. Rakonjac
Belarusian State University; Moscow Institute of Physics and Technology (National Research University)
Email: ushik2001@mail.ru
Belarus, Minsk, 220030; Moscow Region, Dolgoprudny, 141701
L. M. Mannapova
Kazan (Volga region) Federal University
Email: ushik2001@mail.ru
Russian Federation, Kazan, 420008
References
- Алексеев И.В. Развитие комплексного инженерно-геологического и микробиологического мониторинга на Яковлевском руднике для повышения безопасности ведения очистных работ под неосушенными водоносными горизонтами. дис. … канд. геол.-минерал. наук. СПб., 2015.
- Горячкин С.В., Мергелов Н.С., Таргульян В.О. Генезис и география почв экстремальных условий: элементы теории и методические подходы // Почвоведение. 2019. № 1. C. 5–19. https://doi.org/10.1134/S0032180X19010040
- Дашко Р.Э., Котюков П.В. Инженерно-геологическое обеспечение эксплуатационной надежности подземных транспортных сооружений в Санкт-Петербурге // Записки Горного института. 2011. Т. 190. С. 71–77. http://elibrary.ru/item.asp?id=20876963
- Дашко Р.Э., Норова Л.П., Руденко Е.С. Эволюция геоэкологического состояния подземного пространства Санкт-Петербурга // Разведка и охрана недр. 1998. № 7–8. С. 57–59.
- Зорина А.С. Биопленки нитрилгидролизующих бактерий Alcaligenes Faecalis 2 и Rhodococcus Ruber Gt 1 в процессах трансформации нитрилов и амидов карбоновых кислот. Дис. … канд. биол. наук. Пермь, 2020.
- Иноземцев С.А., Таргульян В.О. Верхнепермские палеопочвы: свойства, процессы, условия формирования. М.: ГЕОС, 2009. 188 с.
- Кабов О.А., Зайцев Д.В. Влияние гистерезиса смачивания на растекание капли под действием гравитации // Доклады Академии Наук. 2013. Т. 451. № 1. С. 37–40. https://doi.org/10.7868/S0869565213190122
- Матвеева Н.В., Милановский Е.Ю., Рогова О.Б. Способ подготовки образцов почв для определения контактного угла смачивания методом сидячей капли // Бюл. Почв. ин-та им. В.В. Докучаева. 2019. Вып. 97. С. 91–112. https://doi.org/10.19047/0136-1694-2019-97-91-112
- Муравьев Ф.А., Винокуров В.М., Галеев А.А., Булка Г.Р., Низамутдинов Н.М., Хасанова Н.М. Парамагнетизм и природа рассеянного органического вещества в пермских отложениях Татарстана // Георесурсы. 2006. № 2(19). С. 40–45.
- Новоселов А.А., Константинов А.О. Карбонатные коры на фасадах зданий и сооружений города Тюмени: разнообразие и факторы формирования // Известия Томского политех. ун-та. Инжиниринг георесурсов. 2019. Т. 330. № 3. С. 40–49. https://doi.org/10.18799/24131830/2019/3/163
- Русанов А.И., Есипова Н.Е., Соболев В.Д. Сильная зависимость краевого угла от давления // Доклады Академии наук. 2019. Т. 487. № 2. С. 169–173. https://doi.org/10.31857/S0869-56524872169-173
- Семиколенных А.А., Таргульян В.О. Почвоподобные тела автохемолитотрофных экосистем пещер хребта Кугитангтау (Восточный Туркменистан) // Почвоведение. 2010. № 6. С. 658–672. https://doi.org/10.1134/S0032180X19010040
- Сидоренко С.А. Органическое вещество и биолитогенные процессы в докембрии. М.: Наука, 1991. 104 с.
- Софинская О.А., Костерин А.В., Галеев А.А. Неоднородность смачивания поверхности гидрофобизированных почв и почвообразующих пород // Почвоведение. 2022. № 3. С. 326–336. https://doi.org/10.31857/S0032180X22030133
- Флоровская В.Н. Люминесцентно-битуминологический метод в нефтяной геологии. М.: Изд-во Моск. ун-та, 1957. 293 с.
- Холодов В.А., Ярославцева Н.В., Яшин М.А., Фрид А.С., Лазарев В.И., Тюгай З.Н., Милановский Е.Ю. Контактные углы смачивания и водоустойчивость почвенной структуры // Почвоведение. 2015. № 6. С. 693–701. https://doi.org/10.7868/S0032180X15060064
- Шапиро Т.Н., Дольникова Г.А., Немцева Н.В., Санджиева Д.А., Лобакова Е.С. Идентификация и физиологическая характеристика консорциума углеводородокисляющих бактерий нефти и нефтепродуктов // Журн. микробиол. 2018. № 4. С. 107–113. https://doi.org/10.36233/0372-9311-2018-4-107-113
- Шеин Е.В., Верховцева Н.В., Быкова Г.С., Пашкевич Е.Б. Агрегатообразование в каолинитовой суспензии при микробиологической модификации поверхности глины // Почвоведение. 2020. № 3. С. 351–357. https://doi.org/10.31857/S0032180X20030077
- Achtenhagen J., Goebel M-O, Miltner A., Kaestner M. Bacterial impact on the wetting properties soil minerals // Biogeochemistry. 2015. V. 122(2-3). https://doi.org/10.1007/s10533-014-0040-9
- Ahmed N., Siow K.S., Wee M.F.M.R. et al. A study to examine the ageing behaviour of cold plasma-treated agricultural seeds // Sci. Rep. 2023. V. 13. P. 1675. https://doi.org/10.1038/s41598-023-28811-w
- Alhammadi A.M., AlRatrout A., Singh K. et al. In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions // Sci. Rep. 2017. V. 7. P. 10753. https://doi.org/10.1038/s41598-017-10992-w
- AlRatrout A., Blunt M. J., Bijeljic B. Spatial correlation of contact angle and curvature in pore-space images // Water Res. Res. 2018. V. 54. P. 6133–6152. https://doi.org/10.1029/2017WR022124
- AlRatrout A., Blunt M.J., Bijeljic B. Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness // Proc. Natl. Acad. Sci. USA. 2018. Sep. 4. V. 115(36). P. 8901–8906. https://doi.org/10.1073/pnas.1803734115
- AlRatrout A., Raeini Q.A., Bijeljic B., Blunt M. Automatic measurement of contact angle in pore-space images // Adv. Water Res. 2017. P. 109. https://doi.org/10.1016/j.advwatres.2017.07.018
- Andryukov B.G., Romashko R V., Efimov T.A. et al. Mechanisms of adhesive-coadhesive interaction of bacteria in the formation of a biofilm // Molecular Genetics, Microbiology and Virology. 2020. V. 35(4). P. 195–201. https://doi.org/10.17116/molgen202038041155
- Arvind K.J. Microbiological processes in improving the behavior of soils for civil engineering applications: a critical appraisal // Journal of hazardous, toxic, and radioactive waste. 2022. V. 26(2). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000686
- Aslam T., Deurer M., Müller K. et al. Does an increase in soil organic carbon improve the filtering capacity of aggregated soil for organic pesticides? A case study // Geoderma. 2009. V. 152. P. 187–193. https://doi.org/10.1016/j.geoderma.2009.06.015
- Assadi-Langroudi A., O’Kelly B.C., Barreto D. et al. Recent advances in nature-inspired solutions for ground engineering (NiSE) // Int. J. Geosynthetics Ground Engineer. 2022. V. 8. https://doi.org/10.1007/s40891-021-00349-9
- Atherton S., Polak D., Hamlett C. et al. Drop impact behaviour on alternately hydrophobic and hydrophilic layered bead packs // Chem. Engineering Res. Design. 2016. V. 110. P. 200–208. https://doi.org/10.1016/j.cherd.2016.02.011
- Bachmann J., Goebel M.O. Soil water repellency / in Encyclopedia of Soils in the Environment. Elsevier, 2023. V. 5. P. 203–215. https://doi.org/10.1016/B978-0-12-822974-3.00116-6
- Bachmann J., McHale G. Superhydrophobic surfaces: a model approach to predict contact angle and surface energy of soil particles // Eur. J. Soil Sci. 2009. V. 60(3). P. 420–430. https://doi.org/10.1111/j.1365-2389.2008.01118.x
- Bachmann J., Woche S. K., Goebel M.-O. et al. Extended methodology for determining wetting properties of porous media // Water Res. Res. 2003. V. 39. https://doi.org/10.1029/2003WR002143
- Banks E.D., Taylor N.M., Gulley J. et al. Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis // Geomicrobiology J. 2020. V. 27(5). P. 444–454. https://doi.org/10.1080/01490450903485136
- Borah M.P., Kalit B.B., Jose S. et al. Fabrication of hydrophobic surface on Eri silk/wool fabric using nano silica extracted from rice husk // Silicon. 2023. V. 15. P. 7039–7046. https://doi.org/10.1007/s12633-023-02568-3
- Chao Z., Zhen L., Peng D. Contact angle of soil minerals: A molecular dynamics study // Computers and Geotechnics. 2016. V. 75. P. 48–56. https://doi.org/10.1016/j.compgeo.2016.01.012
- Chen J.H.M., Liu Y. A facile and straightforward immersion approach to enhance the hydrophobicity of melamine sponge for efficient cleanup of crude oils and organic solvents // J. Porous Mater. 2024. V. 31. P. 587–596. https://doi.org/10.1007/s10934-023-01540-1
- Chen M., Wu D., Chen D. et al. Experimental investigation on the movement of triple-phase contact line during a droplet impacting on horizontal and inclined surface // Chemical Engineering Science. 2020. V. 226. P. 115864. https://doi.org/10.1016/j.ces.2020.115864
- Dejong J.T., Kavazanjian, E. Bio-mediated and Bio-inspired Geotechnics // Geotechnical fundamentals for addressing new world challenges. Series in Geomechanics and Geoengineering. Springer, 2019. P. 193–207. https://doi.org/10.1007/978-3-030-06249-1_7
- Deshpande R.A., Navne J., Adelmark M.V. et al. Understanding the light induced hydrophilicity of metal-oxide thin films // Nat. Commun. 2024. V. 15. P. 124. https://doi.org/10.1038/s41467-023-44603-2
- Diehl D. Soil water repellency: Dynamics of heterogeneous surfaces // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2013. V. 432. P. 8–18. http://dx.doi.org/10.1016/j.colsurfa.2013.05.011
- Dorobantu L., Bhattacharjee S., Foght J.M., Gray M.R. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity // Langmuir. 2008. V. 24(9). P. 4944–4951. https://doi.org/10.1021/la7035295
- Eberlein C., Baumgarten T., Starke S., Heipieper H. J. Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion // Appl. Microbiol. Biotechnol. 2018. V. 102. P. 2583–2593. https://doi.org/10.1007/s00253-018-8832-9
- Fahland M., Mishra R. Computational model and simulations of contact angle and geometry effects on centrifugal microfluidic step-emulsification // Microfluid Nanofluid 2023. V. 27. P. 59. https://doi.org/10.1007/s10404-023-02666-z
- Farber L., Al-Aaraj, D., Smith R., Gentzler M. Formation and internal microstructure of granules from wetting and non-wetting efavirenz/ ron oxide blends // Chem. Engineering Sci. 2020. V. 227. P. 115909. https://doi.org/10.1016/j.ces.2020.115909
- Fér M., Leue M., Kodešová R., Gerke H., Ellerbrock R. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors // J. Hydrology and Hydromechanics. 2016. V. 64(2). P. https://doi.org/10.1515/johh-2016-0021
- Francone A., Merino S., Retolaza A. et al. Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films // Surfaces and Interfaces. 2021. V. 27. P. 101494. https://doi.org/10.1016/j.surfin.2021.101494
- Galeev A.A., Vinokurov V.M., Mouraviev F.A., Osin Y. N. EPR and SEM study of organo-mineral associations in Lower Permian evaporite dolomites // Appl. Magnetic Resonance. 2019. V. 35. P. 473–479. https://doi.org/10.1007/s00723-009-0178-0.
- Gao D., Wang F., Lyu B. et al. Multifunctional cotton fabric with durable antibacterial, superhydrophobicity, and UV resistance based on Ag@TiO2 Janus nanoparticles // Cellulose. 2024. V. 31. P. 2617–2633. https://doi.org/10.1007/s10570-023-05727-2
- Ghodrati M., Mousavi-Kamazani M., Bahrami Z. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces // Sci. Rep. 2023. V. 13. P. 548. https://doi.org/10.1038/s41598-023-27811-0
- Gordon C. Contact angle distribution of particles at fluid interfaces // Langmuir: the ACS J. Surfaces Colloids. 2014. V. 31. P. 891–897. https://doi.org/10.1021/la5040195
- Gray C.J., Engel A.S. Microbial impact on aquifer carbonate geochemistry // The ISME J. Int. Soc. Microbial. Ecology. 2013. V. 7. P. 325–337. https://doi.org/10.1038/ismej.2012.105
- Guo R., Dalton L., Fan M. et al. The role of the spatial heterogeneity and correlation length of surface wettability on two-phase flow in a CO2-Water-Rock System // Adv. Water Res. 2020. V. 146. P. 103763. https://doi.org/10.1016/j.advwatres.2020.103763
- Guvensen N.C., Demir S., Ozdemir G. Effects of magnesium and calcium cations on biofilm formation by Sphingomonas paucimobilis from an industrial environment // Current Opinion in Biotechnology. 2013. V. 24(1). P. S68. https://doi.org/10.1016/j.copbio.2013.05.185
- Haider S.A., Raj A. Liquid drops on compliant and non-compliant substrates: an ellipsoid-based fitting for approximating drop shape and volume // Microfluid Nanofluid. 2023. 27. P. 49. https://doi.org/10.1007/s10404-023-02659-y
- Hamlett C., Atherton S., Shirtcliffe N. et al. Transitions of water-drop impact behaviour on hydrophobic and hydrophilic particles // Eur. J. Soil Sci. 2013. V. 64. P. 324–333. https://doi.org/10.1111/ejss.12003
- Hao X., Yao H., Zhang P. et al. Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity // Nat. Water. 2023. V. 1. P. 982–991. https://doi.org/10.1038/s44221-023-00152-y
- Hark R., Harmon R.S. Geochemical Fingerprinting Using LIBS // Springer Series in Optical Sciences. 2014. V. 182. P. 309–344. https://doi.org/10.1007/978-3-642-45085-3-12
- Hassanloofard Z., Gharekhani M., Zandi M. et al. Fabrication and characterization of cellulose acetate film containing Falcaria vulgaris extract // Cellulose. 2023. V. 30. P. 6833–6853. https://doi.org/10.1007/s10570-023-05337-y
- Hata T., Tsukamoto M., Mori H., Kuwano R., Gourc J.P. Evaluation of multiple soil improvement techniques based on microbial functions // Proc. GeoFrontiers Adv. Geotechnical Engineering. Dallas. 2011. V. 211. Р. 3945–3955. https://doi.org/10.1061/41165(397)403
- Hiremani V., Goudar N., Gasti T. et al. Exploration of multifunctional properties of piper betel leaves extract incorporated polyvinyl alcohol-oxidized maize starch blend films for active packaging application // J. Polymers Env. 2022. V. 30. P. 1314–1329. https://doi.org/10.1007/s10924-021-02277-1
- Hoefs J. Geochemical fingerprints: a critical appraisal // Eur. J. Mineral. 2010. V. 22. P. 3–15. https://doi.org/10.1127/0935-1221/2010/0022-1997
- Huhtamäki T., Tian X., Korhonen J., Ras R. Surface-wetting characterization using contact-angle measurements // Nature Protocols. 2018. V. 13. P. 1521–1538. https://doi.org/10.1038/s41596-018-0003-z
- Ibrahim A., Elkatatny S. Data-driven models to predict shale wettability for CO2 sequestration applications // Sci. Rep. 2023. 13. https://doi.org/10.1038/s41598-023-37327-2
- Jańczuk B., Białopiotrowicz T. Components of surface free energy of some clay minerals // Clays and Clay Minerals. 1988. V. 36. P. 243–248.
- Jung H., Kim K., Ko J.-H. Effect of a marine bacterial biofilm on adhesion and retention of pseudo barnacle to silicone coating surface // Korean J. Chem. Engineering. 2014. V. 31. P. 262–267. https://doi.org/10.1007/s11814-013-0218-1
- Kandukuri P., Deshmukh S., Katiresan S. Influence of the static contact angle on the liquid film coverage for falling-film systems // Flow Turbulence Combust. 2023. V. 111. P. 1253–1277. https://doi.org/10.1007/s10494-023-00484-5
- Kirichenko E., Gatapova E. Studying of the contact angle hysteresis on various surfaces // MATEC Web of Conf. 2016. V. 72. P. 01045. https://doi.org/10.1051/matecconf/20167201045
- Kirk S., Strobel M., Christopher S. L., Stuart J. A statistical comparison of contact angle measurement methods // J. Adhesion Sci. Technol. 2019. V. 33(16). P. 1758–1769. https://doi.org/10.1080/01694243.2019.1611400
- Kocijan A., Conradi M., Hočevar M. The influence of surface wettability and topography on the bioactivity of TiO2/Epoxy Coatings on AISI 316L // Stainless Steel Materials. 2019. V. 12. P. 1877. https://doi.org/10.3390/ma12111877
- Krylach I.V., Fokina M.I., Kudryashov S.I. et al. Microfluidic water flow on laser-patterned MicroCoat®–coated steel surface // Appl. Surface Sci. 2021. V. 581. P. 152258. https://doi.org/10.1016/j.apsusc.2021.152258
- Kulshreshtha Y., Vardon P.J., Du Y. et al. Biological stabilisers in earthen construction: a mechanistic Understanding of their response to water-ingress // The 4th International Conf. on Bio-Based Building Materials, June 16th–18th, 2021, Barcelona, Spain. Conference Paper. June, 2021. https://doi.org/10.4028/www.scientific.net/CTA.1.529
- Lai H., Wu S., Cui M., Chu J. Recent development in biogeotechnology and its engineering applications // Front. Struct. Civ. Eng. 2021. V. 15(5). P. 1073–1096. https://doi.org/10.1007/s11709-021-0758-0
- Law K.-Y., Zhao H. Surface wetting: Characterization, contact angle, and fundamentals. Switzerland: Springer Cham, 2016. 162 p. https://doi.org/10.1007/978-3-319-25214-8
- Leelamanie D.A.L., Karube J., Yoshida A. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrohobized sand // Soil Sci. Plant Nutrition. 2008. V. 54. P. 179–187. https://doi.org/10.1111/j.1747-0765.2007.00232.x
- Leelamanie D.A.L., Karube J. Effects of hydrophobic and hydrophilic organic matter on the water repellency of model sandy soils // Soil Sci. Plant Nutrition. 2009. V. 55. P. 462–467. https://doi.org/10.1111/j.1747-0765.2009.00388.x
- Lefebvre G., Galet L., Chamayou A. Dry coating of talc particles with fumed silica: Influence of the silica concentration on the wettability and dispersibility of the composite particles // Powder Technology. 2011. V. 208(2). P. 372–377. https://doi.org/10.1016/j.powtec.2010.08.031
- Li Y., Yu D., Wang X. et al. Lauric arginate/cellulose nanocrystal nanorods-stabilized alkenyl succinic anhydride pickering emulsion: enhancement of stabilization and paper sizing performance // Cellulose. 2022. V. 29. P. 1–17. https://doi.org/10.1007/s10570-022-04502-z
- McHale G., Newton M., Shirtcliffe N. Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: A materials science view // Eur. J. Soil Sci. 2005. V. 56. P. 445–452. https://doi.org/10.1111/j.1365-2389.2004.00683.x
- McHale G., Newton M. Liquid marbles: Principles and applications // Soft Matter. 2011. 7. P. 5473–5481. https://doi.org/10.1039/C1SM05066D
- Melim L.A., Northup D.E., Boston P.J., Spilde M.N. Preservation of fossil microbes and biofilm in cave pool carbonates and comparison to other microbial carbonate environments // Palaios. 2016. V. 31. P. 177–189. http://dx.doi.org/10.2110/palo.2015.033
- Meng J., Yang G., Liu L. et al. Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity // Sci. China Chem. 2017. V. 60. P. https://doi.org/10.1007/s11426-016-9031-8
- Mitik-Dineva N. Bacterial attachment to micro- and nanostructured surfaces. Thesis … Doctor of Philosophy. 2009. Swinburne University of Technology.
- Mundozah A.L., Tridon C.C., Cartwright J.J., Salman A D., Hounslow M.J. Wetting of binary powder mixtures // Int. J. Pharmaceutics. 2019. V. 572. P. 118770. https://doi.org/10.1016/j.ijpharm.2019.118770
- Nagy N. Capillary Bridges on Hydrophobic Surfaces: Analytical contact angle determination // Langmuir. 2022. V. 38. https://doi.org/10.1021/acs.langmuir.2c00674
- Nembrini S., König I. R., Wright M. N. The revival of the Gini importance? // Bioinformatics. 2018. V. 34(21). P. 3711–3718. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198850/
- Nguyen H., Ybarra A., Başağaoğlu H. et al. Biofilm viscoelasticity and nutrient source location control biofilm growth rate, migration rate, and morphology in shear flow // Sci. Rep. 2021. V. 11. https://doi.org/10.1038/s41598-021-95542-1
- Ojeda G., Gi J.M., Mattana S. et al. Biochar ageing effects on soil respiration, biochar wettability and gaseous CO2 adsorption // Mitig. Adapt. Strateg. Glob. Change 2024. V. 29. P. 11. https://doi.org/10.1007/s11027-024-10107-7
- Pommé L.E., Bourqui R., Giot R., Auber D. Relative Confusion Matrix: An efficient visualization for the comparison of classification models // Artificial Intelligence and visualization: advancing visual knowledge discovery. Studies in Computational Intelligence. V. 1126. Springer, 2024. P. 223–243. https://doi.org/10.1007/978-3-031-46549-9_7
- Pronk G.J., Heister K., Vogel C. et al. Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments // Biol. Fertil. Soils. 2017. https://doi.org/10.1007/s00374-016-1161-1
- Regaieg M., Nono F., Faisal T.F. et al. Large-Pore network simulations coupled with innovative wettability anchoring experiment to predict relative permeability of a mixed-wet rock // Transp. Porous Med. 2023. V. 147. P. 495–517. https://doi.org/10.1007/s11242-023-01921-9
- Rohit S., Haider A., Raj A. ANN-aided stiffness characterization of thin membranes using droplet motion // Acta Mechanica. 2023. V. 235. P. 1–18. https://doi.org/10.1007/s00707-023-03755-4
- Ruiz-Cabello F.J., Rodríguez-Valverde M.A., Marmur A., Cabrerizo-Vílchez M. Comparison of sessile drop and captive bubble methods on rough homogeneous surfaces: a numerical study // Langmuir: ACS J. Surfaces Colloids. 2011. V. 27. P. 9638–9643. https://doi.org/10.1021/la201248z
- Semprebon C., McHale G., Kusumaatmaja H. Apparent contact angle and contact angle hysteresis on liquid infused surfaces // Soft Matter. 2016. V. 13(1). P. 101–110. https://doi.org/10.1039/C6SM00920D
- Shang J., Flury M., Harsh J., Zollars R. Comparison of different methods to measure contact angles of soil colloids // J. Colloid Interface Sci. 2008. V. 328. P. 299–307. https://doi.org/10.1016/j.jcis.2008.09.039
- Shang X., Luo Z., Gatapova E., Kabov O., Bai B. GNBC-based front-tracking method for the three-dimensional simulation of droplet motion on a solid surface // Computers Fluids. 2018. V. 172. P. 181–195. https://doi.org/10.1016/j.compfluid.2018.06.021
- Shein E.V., Verkhovtseva N.V., Milanovsky E.Yu., Romanycheva A.A. Microbiological modification of kaolinite and montmorillonite surface: changes in physical and chemical parameters (model experiment) // Biogeosystem. Technique. 2016. V. 3(9). P. 229–234. https://doi.org/10.13187/bgt.2016.9.229
- Sofinskaya O.A., Andrushkevich O.Y., Galiullin B.M. et al. Surface Properties of Carbonate Speleothems in Karst Caves Changing Under Biofilms // Biogenic–Abiogenic Interactions in Natural and Anthropogenic Systems 2022. Proceedings in Earth and Environmental Sciences. Springer, 2023. P. 495–511. https://doi.org/10.1007/978-3-031-40470-2_29
- Sofinskaya O.A., Mannapova L.M., Usmanov R.M. et al. Biogeochemical interface development in a model carbonate-clayey soil // Environ. Earth Sci. 2024. V. 83. P. 6. https://link.springer.com/article/10.1007/s12665-023-11312-4
- Spilde M.N., Boston P.J., Northup D.E., Odenbach K.J. Rock coatings: potential biogenic indicators // Ground Truth From Mars. 2008. V. 1. P. 4045.
- Spilde M.N., Kooser A., Boston P.J., Northup D.E. Speleosol: A Subterranean Soil // ICS Proceedings. Mineralogy. 2009. Р. 338–344.
- Tarabal V.S., Abud Y.K.D., da Silva F.G. et al. Effect of DMPEI coating against biofilm formation on PVC catheter surface // World J. Microbiol. Biotechnol. 2024. V. 40. P. 6. https://doi.org/10.1007/s11274-023-03799-7
- Tan P.N. Receiver Operating Characteristic // Encyclopedia of Database Systems. Springer, 2009. https://doi.org/10.1007/978-0-387-39940-9_569
- Tariq Z., Ali M., Hassanpouryouzband A. et al. Predicting wettability of mineral/CO2/brine systems via data-driven machine learning modeling: Implications for carbon geo-sequestration // Chemosphere. 2023. V. 345. P. 140469. https://doi.org/10.1016/j.chemosphere.2023.140469
- Unkovich M., McBeath T., Llewellyn R. et al. Challenges and opportunities for grain farming on sandy soils of semi-arid south and south-eastern Australia // Soil Res. 2020. V. 58(4). P. 323–334. https://doi.org/10.1071/SR19161
- Wagner D., Milodowski A. E., West J. M., Wragga J., Yoshikawa H. Mineralogical comparisons of experimental results investigating the biological impacts on rock transport processes // Environ. Sci.: Processes Impacts. 2013. V. 15. P. 1501. https://doi.org/10.1039/C3em00188a
- Wang H., Orejon D., Song D. et al. Non-wetting of condensation-induced droplets on smooth monolayer suspended graphene with contact angle approaching 180 degrees // Commun. Mater. 2022. V. 3. P. 75. https://doi.org/10.1038/s43246-022-00294-8
- Wang L., van Paassen L., Pham V., Mahabadi N., He J., Gao Y. A (simplified) biogeochemical numerical model to predict saturation, porosity and permeability during Microbially Induced Desaturation and Precipitation // Water Res. Res. 2023. V. 59. P. https://doi.org/10.1029/2022WR032907
- Wang Z., Yang, Y., Xiang, W. et al. Performance and mechanisms of greywater treatment in a bio-enhanced granular-activated carbon dynamic biofilm reactor // NPJ Clean Water. 2022. V. 5. P. 56. https://doi.org/10.1038/s41545-022-00198-7
- Weisbrod N., McGinnis T., Rockhold M.L., Niemet M.R., Selker J.S. Effective Darcy-scale contact angles in porous media imbibing solutions of various surface tensions // Water Resour. Res. 2009. V. 45(4). P. https://doi.org/10.1029/2008WR006957
- Werb M., Falcón G.C., Bach N.C. et al. Surface topology affects wetting behavior of Bacillus subtilis biofilms // NPJ Biofilms Microbiomes. 2017. V. 3. P. 11. https://doi.org/10.1038/s41522-017-0018-1
- Williams D., Kuhn A., Amann M. et al. Computerized Measurement of Contact Angles 1 // Galvanotechnik. 2010. V. 101. P. 2502–2512.
- Woche S., Goebel M.-O., Kirkham M. et al. Contact angle of soils as affected by depth, texture, and land management // Eur. J. Soil Sci. 2005. V. 56. P. 239–251. https://doi.org/10.1111/j.1365-2389.2004.00664.x
- Wróblewski P., Kachel S. The concept of the contact angle in the process of oil film formation in internal combustion piston engines // Sci. Rep. 2023. V. 13. P. 20715. https://doi.org/10.1038/s41598-023-47763-9
- Wu J., Zhang M., Wang X., Li S., Wen W. A Simple approach for local contact angle determination on a heterogeneous surface // Langmuir: ACS J. Surfaces Colloids. 2011. V. 27. P. 5705–5708. https://doi.org/10.1021/la200697k.
- Xu Z., Li Z., Liu Q. Recent advances in studying colloidal interactions in mineral processing // Mining, Metallurgy Exploration. 2019. 36. P. 35–53. https://doi.org/10.1007/s42461-018-0023-9
- Yan J., Moreau A., Khodaparast S. et al. Bacterial biofilm material properties enable removal and transfer by capillary peeling // Adv. Materials. 2018. V. 30. https://doi.org/10.1002/adma.201804153
- Yuan Y., Hays M., Hardwidg P., Kim J. Surface characteristics influencing bacterial adhesion to polymeric substrates // RSC Adv. 2017. V. 7. P. 14254–14261. https://doi.org/10.1039/C7RA01571B.
- Zeng Ch., Van Paassen L.A., Zheng J. et al. Soil stabilization with microbially induced desaturation and precipitation (MIDP) by denitrification: a field study // Acta Geotechnica. 2022. V. 17. P. 5359–5374. https://doi.org/10.1007/s11440-022-01721-3
- Zhang B., Wang J., Liu Z. et al. Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets // Sci. Rep. 2014. V. 4. P. 5822. https://doi.org/10.1038/srep05822
- Zhang L., Wang S., Wang T. et al. Polishing mechanisms of various surfactants in chemical mechanical polishing relevant to cobalt interconnects // Int. J. Adv. Manuf. Technol. 2023. V. 128. P. 5425–5436. https://doi.org/10.1007/s00170-023-12246-8
- Zorina A.S., Maksimova Y.G., Demakov V.A. Biofilm formation by monocultures and mixed cultures of Alcaligenes Faecalis 2 and Rhodococcus Ruber Gt 1 // Microbiology. 2019. V. 88(2). P. 164–171. https://doi.org/10.1134/S0026261719020140
- Zuo Y., Ding M., Bateni A., Hoorfar M., Neumann A. Improvement of interfacial tension measurement using a captive bubble in conjunction with axisymmetric drop shape analysis (ADSA) // Aspects. 2004. V. 250. P. 233–246. https://doi.org/10.1016/j.colsurfa.2004.04.081
Supplementary files
