Application of machine learning algorithms to classify soil components with different hydrophilicity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The capabilities of the pilot model classifier trained to recognize microbial activity traces on solid surfaces for studying soils and soil-like bodies have been preliminarily assessed. A database of 500 samples described by the authors and in open sources from 1988 to the present was collected for machine learning; among them, 59 samples represented soil horizons, 146 parent rocks and soil-like bodies, as well as rock-forming minerals, accompanying components of soil formation, xenobiotics common in technogenically transformed landscapes of the world. The samples were envolved in the database as options of dispersion, coverage with biofilms and films of other nature, chemical and physical treatment. The array of sample features significant for machine learning included quantiles of the wetting contact angle distribution and generalizing categorical indicators of surface geometry, mineral composition, and state of organic matter. The classification target function was the presence of microbial activity stable traces on a solid surface. Missing data were reconstructed using Monte Carlo procedure and bootstrapping. As a result of numerical experiments on optimizing the machine learning a balanced training dataset containing 1233 pseudo-sample elements was obtained. Six classifier models with parameter variations were trained and evaluated. The most productive classifier, a five-layer neural network with randomly dropout neurons, demonstrated a prediction accuracy of 0.74 and an ROC AUC of 0.80 on the test sample, which is higher than that of simpler and faster classifiers (accuracy and ROC AUC of 0.70). Based on the disagreement between the classifications of a human expert and trained algorithm common feature of samples that are difficult for machine classification were established: with traces of life activity, carbonate, dispersed, which allows one to determine the direction of collecting information to improve the performance of the classifier. The development of an algorithm for recognizing traces of microbial activity is useful for clarifying the mechanisms of biogeochemical and biogeotechnological processes in soils of various origins, including soil formation and terraforming.

Full Text

Restricted Access

About the authors

O. A. Sofinskaya

Kazan (Volga region) Federal University

Author for correspondence.
Email: ushik2001@mail.ru
ORCID iD: 0000-0002-8785-4505
Russian Federation, Kazan, 420008

F. A. Mouraviev

Kazan (Volga region) Federal University

Email: ushik2001@mail.ru
Russian Federation, Kazan, 420008

D. Rakonjac

Belarusian State University; Moscow Institute of Physics and Technology (National Research University)

Email: ushik2001@mail.ru
Belarus, Minsk, 220030; Moscow Region, Dolgoprudny, 141701

L. M. Mannapova

Kazan (Volga region) Federal University

Email: ushik2001@mail.ru
Russian Federation, Kazan, 420008

References

  1. Алексеев И.В. Развитие комплексного инженерно-геологического и микробиологического мониторинга на Яковлевском руднике для повышения безопасности ведения очистных работ под неосушенными водоносными горизонтами. дис. … канд. геол.-минерал. наук. СПб., 2015.
  2. Горячкин С.В., Мергелов Н.С., Таргульян В.О. Генезис и география почв экстремальных условий: элементы теории и методические подходы // Почвоведение. 2019. № 1. C. 5–19. https://doi.org/10.1134/S0032180X19010040
  3. Дашко Р.Э., Котюков П.В. Инженерно-геологическое обеспечение эксплуатационной надежности подземных транспортных сооружений в Санкт-Петербурге // Записки Горного института. 2011. Т. 190. С. 71–77. http://elibrary.ru/item.asp?id=20876963
  4. Дашко Р.Э., Норова Л.П., Руденко Е.С. Эволюция геоэкологического состояния подземного пространства Санкт-Петербурга // Разведка и охрана недр. 1998. № 7–8. С. 57–59.
  5. Зорина А.С. Биопленки нитрилгидролизующих бактерий Alcaligenes Faecalis 2 и Rhodococcus Ruber Gt 1 в процессах трансформации нитрилов и амидов карбоновых кислот. Дис. … канд. биол. наук. Пермь, 2020.
  6. Иноземцев С.А., Таргульян В.О. Верхнепермские палеопочвы: свойства, процессы, условия формирования. М.: ГЕОС, 2009. 188 с.
  7. Кабов О.А., Зайцев Д.В. Влияние гистерезиса смачивания на растекание капли под действием гравитации // Доклады Академии Наук. 2013. Т. 451. № 1. С. 37–40. https://doi.org/10.7868/S0869565213190122
  8. Матвеева Н.В., Милановский Е.Ю., Рогова О.Б. Способ подготовки образцов почв для определения контактного угла смачивания методом сидячей капли // Бюл. Почв. ин-та им. В.В. Докучаева. 2019. Вып. 97. С. 91–112. https://doi.org/10.19047/0136-1694-2019-97-91-112
  9. Муравьев Ф.А., Винокуров В.М., Галеев А.А., Булка Г.Р., Низамутдинов Н.М., Хасанова Н.М. Парамагнетизм и природа рассеянного органического вещества в пермских отложениях Татарстана // Георесурсы. 2006. № 2(19). С. 40–45.
  10. Новоселов А.А., Константинов А.О. Карбонатные коры на фасадах зданий и сооружений города Тюмени: разнообразие и факторы формирования // Известия Томского политех. ун-та. Инжиниринг георесурсов. 2019. Т. 330. № 3. С. 40–49. https://doi.org/10.18799/24131830/2019/3/163
  11. Русанов А.И., Есипова Н.Е., Соболев В.Д. Сильная зависимость краевого угла от давления // Доклады Академии наук. 2019. Т. 487. № 2. С. 169–173. https://doi.org/10.31857/S0869-56524872169-173
  12. Семиколенных А.А., Таргульян В.О. Почвоподобные тела автохемолитотрофных экосистем пещер хребта Кугитангтау (Восточный Туркменистан) // Почвоведение. 2010. № 6. С. 658–672. https://doi.org/10.1134/S0032180X19010040
  13. Сидоренко С.А. Органическое вещество и биолитогенные процессы в докембрии. М.: Наука, 1991. 104 с.
  14. Софинская О.А., Костерин А.В., Галеев А.А. Неоднородность смачивания поверхности гидрофобизированных почв и почвообразующих пород // Почвоведение. 2022. № 3. С. 326–336. https://doi.org/10.31857/S0032180X22030133
  15. Флоровская В.Н. Люминесцентно-битуминологический метод в нефтяной геологии. М.: Изд-во Моск. ун-та, 1957. 293 с.
  16. Холодов В.А., Ярославцева Н.В., Яшин М.А., Фрид А.С., Лазарев В.И., Тюгай З.Н., Милановский Е.Ю. Контактные углы смачивания и водоустойчивость почвенной структуры // Почвоведение. 2015. № 6. С. 693–701. https://doi.org/10.7868/S0032180X15060064
  17. Шапиро Т.Н., Дольникова Г.А., Немцева Н.В., Санджиева Д.А., Лобакова Е.С. Идентификация и физиологическая характеристика консорциума углеводородокисляющих бактерий нефти и нефтепродуктов // Журн. микробиол. 2018. № 4. С. 107–113. https://doi.org/10.36233/0372-9311-2018-4-107-113
  18. Шеин Е.В., Верховцева Н.В., Быкова Г.С., Пашкевич Е.Б. Агрегатообразование в каолинитовой суспензии при микробиологической модификации поверхности глины // Почвоведение. 2020. № 3. С. 351–357. https://doi.org/10.31857/S0032180X20030077
  19. Achtenhagen J., Goebel M-O, Miltner A., Kaestner M. Bacterial impact on the wetting properties soil minerals // Biogeochemistry. 2015. V. 122(2-3). https://doi.org/10.1007/s10533-014-0040-9
  20. Ahmed N., Siow K.S., Wee M.F.M.R. et al. A study to examine the ageing behaviour of cold plasma-treated agricultural seeds // Sci. Rep. 2023. V. 13. P. 1675. https://doi.org/10.1038/s41598-023-28811-w
  21. Alhammadi A.M., AlRatrout A., Singh K. et al. In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions // Sci. Rep. 2017. V. 7. P. 10753. https://doi.org/10.1038/s41598-017-10992-w
  22. AlRatrout A., Blunt M. J., Bijeljic B. Spatial correlation of contact angle and curvature in pore-space images // Water Res. Res. 2018. V. 54. P. 6133–6152. https://doi.org/10.1029/2017WR022124
  23. AlRatrout A., Blunt M.J., Bijeljic B. Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness // Proc. Natl. Acad. Sci. USA. 2018. Sep. 4. V. 115(36). P. 8901–8906. https://doi.org/10.1073/pnas.1803734115
  24. AlRatrout A., Raeini Q.A., Bijeljic B., Blunt M. Automatic measurement of contact angle in pore-space images // Adv. Water Res. 2017. P. 109. https://doi.org/10.1016/j.advwatres.2017.07.018
  25. Andryukov B.G., Romashko R V., Efimov T.A. et al. Mechanisms of adhesive-coadhesive interaction of bacteria in the formation of a biofilm // Molecular Genetics, Microbiology and Virology. 2020. V. 35(4). P. 195–201. https://doi.org/10.17116/molgen202038041155
  26. Arvind K.J. Microbiological processes in improving the behavior of soils for civil engineering applications: a critical appraisal // Journal of hazardous, toxic, and radioactive waste. 2022. V. 26(2). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000686
  27. Aslam T., Deurer M., Müller K. et al. Does an increase in soil organic carbon improve the filtering capacity of aggregated soil for organic pesticides? A case study // Geoderma. 2009. V. 152. P. 187–193. https://doi.org/10.1016/j.geoderma.2009.06.015
  28. Assadi-Langroudi A., O’Kelly B.C., Barreto D. et al. Recent advances in nature-inspired solutions for ground engineering (NiSE) // Int. J. Geosynthetics Ground Engineer. 2022. V. 8. https://doi.org/10.1007/s40891-021-00349-9
  29. Atherton S., Polak D., Hamlett C. et al. Drop impact behaviour on alternately hydrophobic and hydrophilic layered bead packs // Chem. Engineering Res. Design. 2016. V. 110. P. 200–208. https://doi.org/10.1016/j.cherd.2016.02.011
  30. Bachmann J., Goebel M.O. Soil water repellency / in Encyclopedia of Soils in the Environment. Elsevier, 2023. V. 5. P. 203–215. https://doi.org/10.1016/B978-0-12-822974-3.00116-6
  31. Bachmann J., McHale G. Superhydrophobic surfaces: a model approach to predict contact angle and surface energy of soil particles // Eur. J. Soil Sci. 2009. V. 60(3). P. 420–430. https://doi.org/10.1111/j.1365-2389.2008.01118.x
  32. Bachmann J., Woche S. K., Goebel M.-O. et al. Extended methodology for determining wetting properties of porous media // Water Res. Res. 2003. V. 39. https://doi.org/10.1029/2003WR002143
  33. Banks E.D., Taylor N.M., Gulley J. et al. Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis // Geomicrobiology J. 2020. V. 27(5). P. 444–454. https://doi.org/10.1080/01490450903485136
  34. Borah M.P., Kalit B.B., Jose S. et al. Fabrication of hydrophobic surface on Eri silk/wool fabric using nano silica extracted from rice husk // Silicon. 2023. V. 15. P. 7039–7046. https://doi.org/10.1007/s12633-023-02568-3
  35. Chao Z., Zhen L., Peng D. Contact angle of soil minerals: A molecular dynamics study // Computers and Geotechnics. 2016. V. 75. P. 48–56. https://doi.org/10.1016/j.compgeo.2016.01.012
  36. Chen J.H.M., Liu Y. A facile and straightforward immersion approach to enhance the hydrophobicity of melamine sponge for efficient cleanup of crude oils and organic solvents // J. Porous Mater. 2024. V. 31. P. 587–596. https://doi.org/10.1007/s10934-023-01540-1
  37. Chen M., Wu D., Chen D. et al. Experimental investigation on the movement of triple-phase contact line during a droplet impacting on horizontal and inclined surface // Chemical Engineering Science. 2020. V. 226. P. 115864. https://doi.org/10.1016/j.ces.2020.115864
  38. Dejong J.T., Kavazanjian, E. Bio-mediated and Bio-inspired Geotechnics // Geotechnical fundamentals for addressing new world challenges. Series in Geomechanics and Geoengineering. Springer, 2019. P. 193–207. https://doi.org/10.1007/978-3-030-06249-1_7
  39. Deshpande R.A., Navne J., Adelmark M.V. et al. Understanding the light induced hydrophilicity of metal-oxide thin films // Nat. Commun. 2024. V. 15. P. 124. https://doi.org/10.1038/s41467-023-44603-2
  40. Diehl D. Soil water repellency: Dynamics of heterogeneous surfaces // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2013. V. 432. P. 8–18. http://dx.doi.org/10.1016/j.colsurfa.2013.05.011
  41. Dorobantu L., Bhattacharjee S., Foght J.M., Gray M.R. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity // Langmuir. 2008. V. 24(9). P. 4944–4951. https://doi.org/10.1021/la7035295
  42. Eberlein C., Baumgarten T., Starke S., Heipieper H. J. Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion // Appl. Microbiol. Biotechnol. 2018. V. 102. P. 2583–2593. https://doi.org/10.1007/s00253-018-8832-9
  43. Fahland M., Mishra R. Computational model and simulations of contact angle and geometry effects on centrifugal microfluidic step-emulsification // Microfluid Nanofluid 2023. V. 27. P. 59. https://doi.org/10.1007/s10404-023-02666-z
  44. Farber L., Al-Aaraj, D., Smith R., Gentzler M. Formation and internal microstructure of granules from wetting and non-wetting efavirenz/ ron oxide blends // Chem. Engineering Sci. 2020. V. 227. P. 115909. https://doi.org/10.1016/j.ces.2020.115909
  45. Fér M., Leue M., Kodešová R., Gerke H., Ellerbrock R. Droplet infiltration dynamics and soil wettability related to soil organic matter of soil aggregate coatings and interiors // J. Hydrology and Hydromechanics. 2016. V. 64(2). P. https://doi.org/10.1515/johh-2016-0021
  46. Francone A., Merino S., Retolaza A. et al. Impact of surface topography on the bacterial attachment to micro- and nano-patterned polymer films // Surfaces and Interfaces. 2021. V. 27. P. 101494. https://doi.org/10.1016/j.surfin.2021.101494
  47. Galeev A.A., Vinokurov V.M., Mouraviev F.A., Osin Y. N. EPR and SEM study of organo-mineral associations in Lower Permian evaporite dolomites // Appl. Magnetic Resonance. 2019. V. 35. P. 473–479. https://doi.org/10.1007/s00723-009-0178-0.
  48. Gao D., Wang F., Lyu B. et al. Multifunctional cotton fabric with durable antibacterial, superhydrophobicity, and UV resistance based on Ag@TiO2 Janus nanoparticles // Cellulose. 2024. V. 31. P. 2617–2633. https://doi.org/10.1007/s10570-023-05727-2
  49. Ghodrati M., Mousavi-Kamazani M., Bahrami Z. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces // Sci. Rep. 2023. V. 13. P. 548. https://doi.org/10.1038/s41598-023-27811-0
  50. Gordon C. Contact angle distribution of particles at fluid interfaces // Langmuir: the ACS J. Surfaces Colloids. 2014. V. 31. P. 891–897. https://doi.org/10.1021/la5040195
  51. Gray C.J., Engel A.S. Microbial impact on aquifer carbonate geochemistry // The ISME J. Int. Soc. Microbial. Ecology. 2013. V. 7. P. 325–337. https://doi.org/10.1038/ismej.2012.105
  52. Guo R., Dalton L., Fan M. et al. The role of the spatial heterogeneity and correlation length of surface wettability on two-phase flow in a CO2-Water-Rock System // Adv. Water Res. 2020. V. 146. P. 103763. https://doi.org/10.1016/j.advwatres.2020.103763
  53. Guvensen N.C., Demir S., Ozdemir G. Effects of magnesium and calcium cations on biofilm formation by Sphingomonas paucimobilis from an industrial environment // Current Opinion in Biotechnology. 2013. V. 24(1). P. S68. https://doi.org/10.1016/j.copbio.2013.05.185
  54. Haider S.A., Raj A. Liquid drops on compliant and non-compliant substrates: an ellipsoid-based fitting for approximating drop shape and volume // Microfluid Nanofluid. 2023. 27. P. 49. https://doi.org/10.1007/s10404-023-02659-y
  55. Hamlett C., Atherton S., Shirtcliffe N. et al. Transitions of water-drop impact behaviour on hydrophobic and hydrophilic particles // Eur. J. Soil Sci. 2013. V. 64. P. 324–333. https://doi.org/10.1111/ejss.12003
  56. Hao X., Yao H., Zhang P. et al. Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity // Nat. Water. 2023. V. 1. P. 982–991. https://doi.org/10.1038/s44221-023-00152-y
  57. Hark R., Harmon R.S. Geochemical Fingerprinting Using LIBS // Springer Series in Optical Sciences. 2014. V. 182. P. 309–344. https://doi.org/10.1007/978-3-642-45085-3-12
  58. Hassanloofard Z., Gharekhani M., Zandi M. et al. Fabrication and characterization of cellulose acetate film containing Falcaria vulgaris extract // Cellulose. 2023. V. 30. P. 6833–6853. https://doi.org/10.1007/s10570-023-05337-y
  59. Hata T., Tsukamoto M., Mori H., Kuwano R., Gourc J.P. Evaluation of multiple soil improvement techniques based on microbial functions // Proc. GeoFrontiers Adv. Geotechnical Engineering. Dallas. 2011. V. 211. Р. 3945–3955. https://doi.org/10.1061/41165(397)403
  60. Hiremani V., Goudar N., Gasti T. et al. Exploration of multifunctional properties of piper betel leaves extract incorporated polyvinyl alcohol-oxidized maize starch blend films for active packaging application // J. Polymers Env. 2022. V. 30. P. 1314–1329. https://doi.org/10.1007/s10924-021-02277-1
  61. Hoefs J. Geochemical fingerprints: a critical appraisal // Eur. J. Mineral. 2010. V. 22. P. 3–15. https://doi.org/10.1127/0935-1221/2010/0022-1997
  62. Huhtamäki T., Tian X., Korhonen J., Ras R. Surface-wetting characterization using contact-angle measurements // Nature Protocols. 2018. V. 13. P. 1521–1538. https://doi.org/10.1038/s41596-018-0003-z
  63. Ibrahim A., Elkatatny S. Data-driven models to predict shale wettability for CO2 sequestration applications // Sci. Rep. 2023. 13. https://doi.org/10.1038/s41598-023-37327-2
  64. Jańczuk B., Białopiotrowicz T. Components of surface free energy of some clay minerals // Clays and Clay Minerals. 1988. V. 36. P. 243–248.
  65. Jung H., Kim K., Ko J.-H. Effect of a marine bacterial biofilm on adhesion and retention of pseudo barnacle to silicone coating surface // Korean J. Chem. Engineering. 2014. V. 31. P. 262–267. https://doi.org/10.1007/s11814-013-0218-1
  66. Kandukuri P., Deshmukh S., Katiresan S. Influence of the static contact angle on the liquid film coverage for falling-film systems // Flow Turbulence Combust. 2023. V. 111. P. 1253–1277. https://doi.org/10.1007/s10494-023-00484-5
  67. Kirichenko E., Gatapova E. Studying of the contact angle hysteresis on various surfaces // MATEC Web of Conf. 2016. V. 72. P. 01045. https://doi.org/10.1051/matecconf/20167201045
  68. Kirk S., Strobel M., Christopher S. L., Stuart J. A statistical comparison of contact angle measurement methods // J. Adhesion Sci. Technol. 2019. V. 33(16). P. 1758–1769. https://doi.org/10.1080/01694243.2019.1611400
  69. Kocijan A., Conradi M., Hočevar M. The influence of surface wettability and topography on the bioactivity of TiO2/Epoxy Coatings on AISI 316L // Stainless Steel Materials. 2019. V. 12. P. 1877. https://doi.org/10.3390/ma12111877
  70. Krylach I.V., Fokina M.I., Kudryashov S.I. et al. Microfluidic water flow on laser-patterned MicroCoat®–coated steel surface // Appl. Surface Sci. 2021. V. 581. P. 152258. https://doi.org/10.1016/j.apsusc.2021.152258
  71. Kulshreshtha Y., Vardon P.J., Du Y. et al. Biological stabilisers in earthen construction: a mechanistic Understanding of their response to water-ingress // The 4th International Conf. on Bio-Based Building Materials, June 16th–18th, 2021, Barcelona, Spain. Conference Paper. June, 2021. https://doi.org/10.4028/www.scientific.net/CTA.1.529
  72. Lai H., Wu S., Cui M., Chu J. Recent development in biogeotechnology and its engineering applications // Front. Struct. Civ. Eng. 2021. V. 15(5). P. 1073–1096. https://doi.org/10.1007/s11709-021-0758-0
  73. Law K.-Y., Zhao H. Surface wetting: Characterization, contact angle, and fundamentals. Switzerland: Springer Cham, 2016. 162 p. https://doi.org/10.1007/978-3-319-25214-8
  74. Leelamanie D.A.L., Karube J., Yoshida A. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrohobized sand // Soil Sci. Plant Nutrition. 2008. V. 54. P. 179–187. https://doi.org/10.1111/j.1747-0765.2007.00232.x
  75. Leelamanie D.A.L., Karube J. Effects of hydrophobic and hydrophilic organic matter on the water repellency of model sandy soils // Soil Sci. Plant Nutrition. 2009. V. 55. P. 462–467. https://doi.org/10.1111/j.1747-0765.2009.00388.x
  76. Lefebvre G., Galet L., Chamayou A. Dry coating of talc particles with fumed silica: Influence of the silica concentration on the wettability and dispersibility of the composite particles // Powder Technology. 2011. V. 208(2). P. 372–377. https://doi.org/10.1016/j.powtec.2010.08.031
  77. Li Y., Yu D., Wang X. et al. Lauric arginate/cellulose nanocrystal nanorods-stabilized alkenyl succinic anhydride pickering emulsion: enhancement of stabilization and paper sizing performance // Cellulose. 2022. V. 29. P. 1–17. https://doi.org/10.1007/s10570-022-04502-z
  78. McHale G., Newton M., Shirtcliffe N. Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: A materials science view // Eur. J. Soil Sci. 2005. V. 56. P. 445–452. https://doi.org/10.1111/j.1365-2389.2004.00683.x
  79. McHale G., Newton M. Liquid marbles: Principles and applications // Soft Matter. 2011. 7. P. 5473–5481. https://doi.org/10.1039/C1SM05066D
  80. Melim L.A., Northup D.E., Boston P.J., Spilde M.N. Preservation of fossil microbes and biofilm in cave pool carbonates and comparison to other microbial carbonate environments // Palaios. 2016. V. 31. P. 177–189. http://dx.doi.org/10.2110/palo.2015.033
  81. Meng J., Yang G., Liu L. et al. Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity // Sci. China Chem. 2017. V. 60. P. https://doi.org/10.1007/s11426-016-9031-8
  82. Mitik-Dineva N. Bacterial attachment to micro- and nanostructured surfaces. Thesis … Doctor of Philosophy. 2009. Swinburne University of Technology.
  83. Mundozah A.L., Tridon C.C., Cartwright J.J., Salman A D., Hounslow M.J. Wetting of binary powder mixtures // Int. J. Pharmaceutics. 2019. V. 572. P. 118770. https://doi.org/10.1016/j.ijpharm.2019.118770
  84. Nagy N. Capillary Bridges on Hydrophobic Surfaces: Analytical contact angle determination // Langmuir. 2022. V. 38. https://doi.org/10.1021/acs.langmuir.2c00674
  85. Nembrini S., König I. R., Wright M. N. The revival of the Gini importance? // Bioinformatics. 2018. V. 34(21). P. 3711–3718. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6198850/
  86. Nguyen H., Ybarra A., Başağaoğlu H. et al. Biofilm viscoelasticity and nutrient source location control biofilm growth rate, migration rate, and morphology in shear flow // Sci. Rep. 2021. V. 11. https://doi.org/10.1038/s41598-021-95542-1
  87. Ojeda G., Gi J.M., Mattana S. et al. Biochar ageing effects on soil respiration, biochar wettability and gaseous CO2 adsorption // Mitig. Adapt. Strateg. Glob. Change 2024. V. 29. P. 11. https://doi.org/10.1007/s11027-024-10107-7
  88. Pommé L.E., Bourqui R., Giot R., Auber D. Relative Confusion Matrix: An efficient visualization for the comparison of classification models // Artificial Intelligence and visualization: advancing visual knowledge discovery. Studies in Computational Intelligence. V. 1126. Springer, 2024. P. 223–243. https://doi.org/10.1007/978-3-031-46549-9_7
  89. Pronk G.J., Heister K., Vogel C. et al. Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments // Biol. Fertil. Soils. 2017. https://doi.org/10.1007/s00374-016-1161-1
  90. Regaieg M., Nono F., Faisal T.F. et al. Large-Pore network simulations coupled with innovative wettability anchoring experiment to predict relative permeability of a mixed-wet rock // Transp. Porous Med. 2023. V. 147. P. 495–517. https://doi.org/10.1007/s11242-023-01921-9
  91. Rohit S., Haider A., Raj A. ANN-aided stiffness characterization of thin membranes using droplet motion // Acta Mechanica. 2023. V. 235. P. 1–18. https://doi.org/10.1007/s00707-023-03755-4
  92. Ruiz-Cabello F.J., Rodríguez-Valverde M.A., Marmur A., Cabrerizo-Vílchez M. Comparison of sessile drop and captive bubble methods on rough homogeneous surfaces: a numerical study // Langmuir: ACS J. Surfaces Colloids. 2011. V. 27. P. 9638–9643. https://doi.org/10.1021/la201248z
  93. Semprebon C., McHale G., Kusumaatmaja H. Apparent contact angle and contact angle hysteresis on liquid infused surfaces // Soft Matter. 2016. V. 13(1). P. 101–110. https://doi.org/10.1039/C6SM00920D
  94. Shang J., Flury M., Harsh J., Zollars R. Comparison of different methods to measure contact angles of soil colloids // J. Colloid Interface Sci. 2008. V. 328. P. 299–307. https://doi.org/10.1016/j.jcis.2008.09.039
  95. Shang X., Luo Z., Gatapova E., Kabov O., Bai B. GNBC-based front-tracking method for the three-dimensional simulation of droplet motion on a solid surface // Computers Fluids. 2018. V. 172. P. 181–195. https://doi.org/10.1016/j.compfluid.2018.06.021
  96. Shein E.V., Verkhovtseva N.V., Milanovsky E.Yu., Romanycheva A.A. Microbiological modification of kaolinite and montmorillonite surface: changes in physical and chemical parameters (model experiment) // Biogeosystem. Technique. 2016. V. 3(9). P. 229–234. https://doi.org/10.13187/bgt.2016.9.229
  97. Sofinskaya O.A., Andrushkevich O.Y., Galiullin B.M. et al. Surface Properties of Carbonate Speleothems in Karst Caves Changing Under Biofilms // Biogenic–Abiogenic Interactions in Natural and Anthropogenic Systems 2022. Proceedings in Earth and Environmental Sciences. Springer, 2023. P. 495–511. https://doi.org/10.1007/978-3-031-40470-2_29
  98. Sofinskaya O.A., Mannapova L.M., Usmanov R.M. et al. Biogeochemical interface development in a model carbonate-clayey soil // Environ. Earth Sci. 2024. V. 83. P. 6. https://link.springer.com/article/10.1007/s12665-023-11312-4
  99. Spilde M.N., Boston P.J., Northup D.E., Odenbach K.J. Rock coatings: potential biogenic indicators // Ground Truth From Mars. 2008. V. 1. P. 4045.
  100. Spilde M.N., Kooser A., Boston P.J., Northup D.E. Speleosol: A Subterranean Soil // ICS Proceedings. Mineralogy. 2009. Р. 338–344.
  101. Tarabal V.S., Abud Y.K.D., da Silva F.G. et al. Effect of DMPEI coating against biofilm formation on PVC catheter surface // World J. Microbiol. Biotechnol. 2024. V. 40. P. 6. https://doi.org/10.1007/s11274-023-03799-7
  102. Tan P.N. Receiver Operating Characteristic // Encyclopedia of Database Systems. Springer, 2009. https://doi.org/10.1007/978-0-387-39940-9_569
  103. Tariq Z., Ali M., Hassanpouryouzband A. et al. Predicting wettability of mineral/CO2/brine systems via data-driven machine learning modeling: Implications for carbon geo-sequestration // Chemosphere. 2023. V. 345. P. 140469. https://doi.org/10.1016/j.chemosphere.2023.140469
  104. Unkovich M., McBeath T., Llewellyn R. et al. Challenges and opportunities for grain farming on sandy soils of semi-arid south and south-eastern Australia // Soil Res. 2020. V. 58(4). P. 323–334. https://doi.org/10.1071/SR19161
  105. Wagner D., Milodowski A. E., West J. M., Wragga J., Yoshikawa H. Mineralogical comparisons of experimental results investigating the biological impacts on rock transport processes // Environ. Sci.: Processes Impacts. 2013. V. 15. P. 1501. https://doi.org/10.1039/C3em00188a
  106. Wang H., Orejon D., Song D. et al. Non-wetting of condensation-induced droplets on smooth monolayer suspended graphene with contact angle approaching 180 degrees // Commun. Mater. 2022. V. 3. P. 75. https://doi.org/10.1038/s43246-022-00294-8
  107. Wang L., van Paassen L., Pham V., Mahabadi N., He J., Gao Y. A (simplified) biogeochemical numerical model to predict saturation, porosity and permeability during Microbially Induced Desaturation and Precipitation // Water Res. Res. 2023. V. 59. P. https://doi.org/10.1029/2022WR032907
  108. Wang Z., Yang, Y., Xiang, W. et al. Performance and mechanisms of greywater treatment in a bio-enhanced granular-activated carbon dynamic biofilm reactor // NPJ Clean Water. 2022. V. 5. P. 56. https://doi.org/10.1038/s41545-022-00198-7
  109. Weisbrod N., McGinnis T., Rockhold M.L., Niemet M.R., Selker J.S. Effective Darcy-scale contact angles in porous media imbibing solutions of various surface tensions // Water Resour. Res. 2009. V. 45(4). P. https://doi.org/10.1029/2008WR006957
  110. Werb M., Falcón G.C., Bach N.C. et al. Surface topology affects wetting behavior of Bacillus subtilis biofilms // NPJ Biofilms Microbiomes. 2017. V. 3. P. 11. https://doi.org/10.1038/s41522-017-0018-1
  111. Williams D., Kuhn A., Amann M. et al. Computerized Measurement of Contact Angles 1 // Galvanotechnik. 2010. V. 101. P. 2502–2512.
  112. Woche S., Goebel M.-O., Kirkham M. et al. Contact angle of soils as affected by depth, texture, and land management // Eur. J. Soil Sci. 2005. V. 56. P. 239–251. https://doi.org/10.1111/j.1365-2389.2004.00664.x
  113. Wróblewski P., Kachel S. The concept of the contact angle in the process of oil film formation in internal combustion piston engines // Sci. Rep. 2023. V. 13. P. 20715. https://doi.org/10.1038/s41598-023-47763-9
  114. Wu J., Zhang M., Wang X., Li S., Wen W. A Simple approach for local contact angle determination on a heterogeneous surface // Langmuir: ACS J. Surfaces Colloids. 2011. V. 27. P. 5705–5708. https://doi.org/10.1021/la200697k.
  115. Xu Z., Li Z., Liu Q. Recent advances in studying colloidal interactions in mineral processing // Mining, Metallurgy Exploration. 2019. 36. P. 35–53. https://doi.org/10.1007/s42461-018-0023-9
  116. Yan J., Moreau A., Khodaparast S. et al. Bacterial biofilm material properties enable removal and transfer by capillary peeling // Adv. Materials. 2018. V. 30. https://doi.org/10.1002/adma.201804153
  117. Yuan Y., Hays M., Hardwidg P., Kim J. Surface characteristics influencing bacterial adhesion to polymeric substrates // RSC Adv. 2017. V. 7. P. 14254–14261. https://doi.org/10.1039/C7RA01571B.
  118. Zeng Ch., Van Paassen L.A., Zheng J. et al. Soil stabilization with microbially induced desaturation and precipitation (MIDP) by denitrification: a field study // Acta Geotechnica. 2022. V. 17. P. 5359–5374. https://doi.org/10.1007/s11440-022-01721-3
  119. Zhang B., Wang J., Liu Z. et al. Beyond Cassie equation: Local structure of heterogeneous surfaces determines the contact angles of microdroplets // Sci. Rep. 2014. V. 4. P. 5822. https://doi.org/10.1038/srep05822
  120. Zhang L., Wang S., Wang T. et al. Polishing mechanisms of various surfactants in chemical mechanical polishing relevant to cobalt interconnects // Int. J. Adv. Manuf. Technol. 2023. V. 128. P. 5425–5436. https://doi.org/10.1007/s00170-023-12246-8
  121. Zorina A.S., Maksimova Y.G., Demakov V.A. Biofilm formation by monocultures and mixed cultures of Alcaligenes Faecalis 2 and Rhodococcus Ruber Gt 1 // Microbiology. 2019. V. 88(2). P. 164–171. https://doi.org/10.1134/S0026261719020140
  122. Zuo Y., Ding M., Bateni A., Hoorfar M., Neumann A. Improvement of interfacial tension measurement using a captive bubble in conjunction with axisymmetric drop shape analysis (ADSA) // Aspects. 2004. V. 250. P. 233–246. https://doi.org/10.1016/j.colsurfa.2004.04.081

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (194KB)
3. Fig. 1. Some principles of data preprocessing for the purposes of ML in soil science.

Download (131KB)
4. Fig. 2. Approximate distribution of CU on the surfaces of samples with persistent traces of biofilms (blue columns) and without them (pink columns) according to our own measurements: 0 - glass slide: disinfectant solution and calcination, 1 - glass with biofilm, 12 - marble onyx section, 13 - marble onyx with biofilm, 86 - bentonite with biofilm, 87 - bentonite: calcination, 108 - kaolin: calcination, 109 - kaolin with biofilm.

Download (278KB)
5. Fig. 3. Balanced features of the surface of samples used for ML. The designations of the features are explained in Table 2.

Download (217KB)
6. Fig. 4. ROC curve for the neural network - classifier of samples for the presence of persistent traces of biofilms with optimal characteristics.

Download (71KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».