Bioavailability of polycyclic aromatic hydrocarbons in soils contaminated with airborn dust depositions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A model experiment on PAH biodegradation in the upper horizons of urban soils with different contents of organic matter was carried out. Airborn dust depositions containing polycyclic aromatic hydrocarbons were added to the soil samples, then the soils were incubated at constant humidity and temperature. Total and potentially bioavailable fractions of phenanthrene, pyrene and benz(a)pyrene were determined in the soils after 1, 51, 102, 190 and 365 days of incubation. The total PAH content determined by exhaustive extraction and the amount of their potentially bioavailable fraction extracted with n-butanol decreased exponentially during 365 days of the experiment both in control samples and in mixtures with atmospheric dust. The biodegradation rate of PAHs was proportional to the absolute content of their bioavailable fraction in soils, and for soil with high organic matter content correlated inversely with the hydrophobicity of the three PAHs examined. The relative content of the bioavailable fraction for phenanthrene and pyrene decreased during the experiment, but remained almost constant for benz(a)pyrene. Based on the obtained results, a scheme for transformation of PAHs from airborne dust depositions in soils is proposed, in which, when assessing the bioavailability of PAHs, not only the molecular parameters of polyarenes are taken into account, but also the phase composition of the polluting source material containing PAH. It has been shown that the procedure for determining the potentially bioavailable fraction of polyarenes in soil by directly measuring their concentration in n-butanol together with measuring the total PAH content can be used as a method for environmental assessment of the state of PAH in urban soils when predicting the rate of accumulation and transformation of hydrophobic pollutants.

Full Text

Restricted Access

About the authors

Yu. A. Zavgorodnyaya

Lomonosov Moscow State University

Author for correspondence.
Email: zyu99@mail.ru
ORCID iD: 0000-0003-0583-2140
Russian Federation, Moscow, 119991

V. V. Demin

Lomonosov Moscow State University

Email: zyu99@mail.ru
Russian Federation, Moscow, 119991

References

  1. Геннадиев А.Н., Пиковский Ю.И., Цибарт А.С., Смирнова М. А. Углеводороды в почвах: происхождение, состав, поведение (обзор) // Почвоведение. 2015. № 10. С. 1195–1209. https://doi.org/10.7868/S0032180X15100020
  2. Герасимова М.И., Строганова М.Н., Можарова Н.В., Прокофьева Т.В. Антропогенные почвы: генезис, география, рекультивация. Смоленск: Ойкумена, 2003. 268 с.
  3. Орлов Д.С. Химия почв. М.: Изд-во Моск. ун-та, 1985. 376 с.
  4. Прокофьева Т.В., Мартыненко И.А., Иванников Ф.А. Систематика почв и почвообразующих пород Москвы и возможность их включения в общую классификацию // Почвоведение. 2011. № 5. С. 611–623.
  5. Прокофьева Т.И., Герасимова М.И., Безуглова О.С., Бахматова К.А., Гольева А.А., Горбов С.Н., Жарикова Е.А., Матинян Н.Н., Наквасина Е.Н., Сивцева Н.Е. Введение почв и почвоподобных образований городских территорий в классификацию почв России // Почвоведение. 2014. № 10. С. 1155–1164. https://doi.org/10.7868/S0032180X14100104
  6. Agency for Toxic Substances and Disease Registry, 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). TP-95-20, U.S. Department of Health and Human Service, ATSDR, Atlanta, GA.
  7. Alexander M. Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants // Environ. Sci. Technol. 2000. V. 34(20). P. 4259–4265.
  8. Ananyeva N.D., Susyan E.A., Gavrilenko E.G. Determination of the soil microbial biomass carbon using the method of substrate induced respiration // Eurasian Soil Science. 2011. V. 44. P. 1215–1221. https://doi.org/10.1134/S1064229311030021
  9. Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221.
  10. Bandowe B., Wilcke W. Analysis of Polycyclic Aromatic Hydrocarbons and Their Oxygen-Containing Derivatives and Metabolites in Soils // J. Environ. Quality. 2010. V. 39(4). P. 1349–1358.
  11. Bogan B.W., Sullivan W.R. Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil // Chemosphere. 2003. V. 52. Р. 1717–1726.
  12. Bumpus J.A. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaetech rysosporium // Appl. Environ. Microbiol. 1989. V. 61. P. 2631–2635.
  13. Cerniglia C.E. Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation // J. Industrial Microbiol. Biotechnol. 1997. V. 19. P. 324–333.
  14. Cheng H., Sun Q., Bian Y., Han J., Jiang X., Xue J., Song Y. Predicting the bioavailability of polycyclic aromatic hydrocarbons in rhizosphere soil using a new novel in situ solid-phase microextraction technique // Sci. Total Environ. 2024. V. 930. P. 172802. https://doi.org/10.1016/j.scitotenv.2024.172802
  15. Chung N., Alexander M. Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils. // Environ. Sci. Technol. 1998. V. 32. P. 855–860.
  16. Chung N., Alexander M. Effect of soil properties on bioavailability andextractability of phenanthrene and atrazine sequestered in soil // Chemosphere. 2002. V. 48. P. 109–115.
  17. Cui X., Mayer P., Gan J. Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations // Environ. Poll. 2013. V. 172. P. 223–234.
  18. Cuypers C.T., Grotenhuis P.T., Rulkens W. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-b-cyclodextrin and Triton X-100 extraction techniques // Chemosphere. 2002. V. 46. P. 1235–1245.
  19. Dat N.-D., Chang M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies // Sci. Total Environ. 2017. V. 609. P. 682–693. https://doi.org/10.1016/j.scitotenv.2017.07.204
  20. Dobbins R.A., Fletcher R.A., Chang H.-C. The Evolution of Soot Precursor Particles in a Diffusion Flame // Combustion and flame. 1998. V. 115. P. 285–298.
  21. Dean J.R. Bioavailability, Bioaccessibility and Mobility of Environmental Contaminants. Chichester, 2007.
  22. Doick K.J., Dew N.M., Semple K.T. Linking Catabolism to Cyclodextrin Extractability: Determination of the Microbial Availability of PAHs in Soil // Environ. Sci. Technol. 2005. V. 39. P. 8858–8864.
  23. Dua M., Singh A., Sethunathan N., Johri A.K. Biotechnology and bioremediation: successes and limitations // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 143–152.
  24. Duan L., Naidu R. Effect of ionic strength and index cation on the sorption of phenanthrene. // Water, Air, Soil Poll. 2013. V. 224. P. 1700–1717.
  25. Ehlers G.A.C., Loibner A.P. Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology: a review of geosorbent characterisation and (bio)availability prediction // Environ. Poll. 2006. V. 141. P. 494–512.
  26. Ehlers L.J., Luthy R.G. Contaminant bioavailability in soil and sediment // Environ. Sci. Technol. 2003. V. 37(15). P. 295–302.
  27. Eweis J.B., Ergas S.J., Chang D.P.Y., Schroeder E.D. Bioremediation Principles. Boston 1998.
  28. Fang X., Wu L., Zhang O., Zhang J., Wang A., Zhang Y., Zhao J., Mao H. Characteristics, emissions and source identifications of particle polycyclic aromatic hydrocarbons from traffic emissions using tunnel measurement // Transportation Research Part D: Transport and Environment. 2019. V. 67. P. 674–684. https://doi.org/.org/10.1016/j.trd.2018.02.021
  29. Gao Y., Hu X., Zhou Z., Zhang W., Wang Y., Sun B. Phytoavailability and mechanism of bound PAH residues in filed contaminated soils // Environ. Poll. 2017. V. 222. P. 465–476. http://dx.doi.org/10.1016/j.envpol.2016.11.076
  30. Guo W., Ren H., Jin Y., Chai Z., Liu B. The bioremediation of the typical persistent organic pollutants (POPs) by microalgae-bacteria consortia: A systematic review // Chemosphere. 2024. V. 355. P. 141852. https://doi.org/10.1016/j.chemosphere.2024.141852
  31. Haritash A.K., Kaushik C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs) // J. Hazardous Mater. 2009. V. 169. P. 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137.
  32. Hatzinger P.B., Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability // Environ. Sci. Technol. 1995. V. 29. P. 537–545.
  33. Hundal L.S., Thompson M.L., Laird D.A., Carmo A.M. Sorption of phenanthrene by reference smectites // Environ. Sci. Technol. 2001. V. 35. P. 3456-3461.
  34. Hwang S., Cutright T.J. Effect of Expandable Clays and Cometabolism on PAH Biodegradability // Environ. Sci. Poll. Res. 2003. V. 10(5). P. 277–280. https://doi.org/0.1065/espr2003.08.167
  35. Jahin H.S., Barsoum B.N., Tawfic T.A., Headley J.V. Occurrence and distribution of polycyclic aromatic hydrocarbons in the Egyptian aquatic environment // J. Environ. Sci. Health. 2009. V. 44. P. 1237-1243.
  36. Juhasz A.L. Bioavailability and biodegradation of polycyclic aromatic hydrocarbons // Microbiology Australia. 2014. V. 10 P. 199-200.
  37. Käcker T., Haupt E.T.K., Garms C., Francke W., Steinhart H. Structural characterisation of humic acid-bound PAH residues in soil by 13C-CPMAS-NMR-spectroscopy: evidence of covalent bonds // Chemosphere. 2002. V. 48. P. 117–131.
  38. Kelsey J.W., Kottler B.D., Alexander M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals // Environ. Sci. Technol. 1997. V. 31. P. 214–217.
  39. Kosheleva N.E., Vlasov D.V., Timofeev I.V., Samsonov T.E., Kasimov N.S. Benzo[a]pyrene in Moscow road dust: pollution levels and health risks // Environ. Geochem. Health. 2023. V. 45. P. 1669–1694. https://doi.org/10.1007/s10653-022-01287-9
  40. Krauss M., Wilcke W., Zech W. Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. // Environ. Sci. Technol. 2000. V. 34. P. 4335–4340.
  41. Kuppusamy S., Thavamani P., Venkateswarlu K., Lee Y.B., Naidu R., Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs)contaminated soils: Technological constraints, emerging trends and future directions // Chemosphere. 2017. V. 168. P. 944–968. https://dx.doi.org/10.1016/j.chemosphere.2016.10.115
  42. Kuzyakov Y., Friedel J.K., K. Stahr K. Review of mechanisms and quantification of priming effects // Soil Biol. Biochem. 2000. V. 32. P. 1485–1498.
  43. Lei L., Bagchi R., Khodadoust A.P., Suidan M.T., Tabak H.H. Bioavailability prediction of polycyclic aromatic hydrocarbons in field-contaminated sediment by mild extractions // J. Environ. Engineering-ASCE. 2006. V. 132. P. 384–391.
  44. Liste H.-H., Alexander M. Butanol extraction to predict bioavailability of PAHs in soil // Chemosphere. 2002. V. 46. P. 1011–1017.
  45. Liu S., Tao S., Liu W., Dou H., Liu Y., Zhao J., Little M.G., Tian Z., Wang J., Wang L., Gao Y. Seasonal and spatial occurrence and distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in rural and urban areas of the North Chinese Plain // Environ. Poll. 2008. V. 156. P. 651–656.
  46. MacLeod C.J.A., Semple K.T. Influence of contact time on extractability and degradation of pyrene in soils // Environ. Sci. Technol. 2000. V. 34. P. 4952–4957.
  47. Nam K., Alexander M. Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids // Environ. Sci. Technol. 1998. V. 32. P. 71–74.
  48. Nam K., Kim J.Y. Role of loosely bound humic substances and humin in bioavailability of phenanthrene aged in soil // Environ. Poll. 2002. V. 118. P. 427–433.
  49. Ni J., Luo Y., Wei R., Li X. Distribution patterns of polycyclic aromatic hydrocarbons among different organic carbon fractions of polluted agricultural soils // Geoderma. 2008. V. 146. P. 277–282. https://doi.org/10.1016/j.geoderma.2008.06.001
  50. Nikiforova E.M., Kosheleva N.E. Polycyclic Aromatic Hydrocarbons in Urban Soils (Moscow, Eastern District) // Eurasian Soil Science. 2011. V. 44 P. 1018–1030. https://doi.org/10.1134/S1064229311090092
  51. Ortega-Calvo J.J., Harmsen J., Parsons J.R., Semple K.T., Aitken M.D., Ajao C., Eadsforth C., Galay-Burgos M., Naidu R., Oliver R., Peijnenburg W.J.G.M., Römbke J., Streck G., Versonnen B. From Bioavailability Science to Regulation of Organic Chemicals // Environ. Sci. Technol. 2015. V. 49. P. 10255−10264. https://doi.org/10.1021/acs.est.5b02412
  52. Patel A. B., Shaikh S., Jain K. R., Desai C., Madamwar D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches // Frontiers in Microbiology. 2020, V. 11. P. 562813. https://doi.org/10.3389/fmicb.2020.562813
  53. Peng C., Ouyang Z., Wang M., Chen W., Li X., Crittenden J.C. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators // Environ. Poll. 2013. V. 178. P. 426–432.
  54. Pu X., Lee L.S., Galinsky R.E., Carlson G.P. Evaluation of rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils // Toxicol. Sci. 2004. V. 79. P. 10–17.
  55. Qin S., Li X., Han E., Fan Y., Liu S., Ding Y., Qi S. Strategies and mechanisms for improving the detection accuracy of nonextractable residues of polycyclic aromatic hydrocarbons in soils // Sci. Total Environ. 2024. V. 943. P. 173908. https://doi.org/10.1016/j.scitotenv.2024.173908
  56. Ravindra K., Sokhi R., Van Grieken R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation // Atmospheric Environment. 2008. V. 42. P. 2895–2921.
  57. Reichenberg F., Mayer P. Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. // Environ. Toxicol. Chem. 2006. V. 25. P. 1239-45.
  58. Richnow H.H., Seifert R., Hefter J., Link A., Francke W., Schaefer G., Michaelis W. Organic pollutants associated with macromolecular soil organic matter: Mode of binding // Org. Geochem. 1997. V. 26. P. 745-758.
  59. Riding M.J., Doick K.J., Martin F.L., Jones K.C., Semple K.T. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application // J. Hazardous Mater. 2013. V. 261. P. 687–700. dx.doi.org/10.1016/j.jhazmat.2013.03.033
  60. Semenova A.V., Popovicheva O.B., Zavgorodnyaya Yu.A., Chichaeva M.A., Kovach R.G., Kosheleva N.E., Minkina T.M., Kasimov N.S. Aerosol Pollution of the Moscow Megacity by Polyaromatic Hydrocarbons: Seasonal Variability and Toxicological Risks // Her. Rus. Acad. Sci. 2023. V. 93. P. 316–329. https://doi.org/10.1134/S1019331623040056
  61. Semerjian L., Okaiyeto K., Ojemaye M.O., Ekundayo T.C., Igwaran A., Okoh A.I. Global Systematic Mapping of Road Dust Research from 1906 to 2020: Research Gaps and Future Direction // Sustainability. 2021. V. 13. P. 11516. https://doi.org/10.3390/su132011516
  62. Semple K.T., Morriss A. W. J., Patton G.I. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis // Eur. J. Soil Sci. 2003. V. 54. P. 809–818.
  63. Shao C., Wang Q., Zhang W., Bennett A., Li Y., Guo J., Im H.G., Roberts W.L., Violi A., Sarathy S.M. Elucidating the polycyclic aromatic hydrocarbons involved in soot inception // Commun. Chem. 2023. V. 6. P. 223. https://doi.org/10.1038/s42004-023-01017-x
  64. Sijm D, Kraaij R, Belfroid A. Bioavailability in soil or sediment: exposure of different organisms and approaches to study it // Environ. Poll. 2000. V. 108. P. 113-119.
  65. Singh A., Ward O.P. Biodegradation and Bioremediation: Ser. Soil Biolog. V. 2. N.Y.: Springer-Verlag, 2004.
  66. Slezakova K, Castro D, Delerue-Matos C, da Conceição Alvim-Ferraza M, Morais S, do Carmo Pereira M. Impact of vehicular traffic emissions on particulate-bound PAHs: levels and associated health risks // Atmospheric Res. 2013. V. 127. P. 141–147.
  67. Stogiannidis E., Laane R. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities // Reviews of Environmental Contamination and Toxicology. 2015. V. 234. P. 49–133.
  68. Tao S., Xu F.L., Liu W.X., Cui Y.H., Coveney R.M. A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter // Environ. Sci. Technol. 2006. V. 40. P. 2219–2224.
  69. Tobiszewski M., Namiesnik J. PAH diagnostic ratios for the identification of pollution emission sources. // Environ. Poll. 2012. V. 162. P. 110–119.
  70. Towell M. G., Vazquez-Cuevas G.M., Bellarby J., Paton G.I., Coulon F., Pollard S.J.T., Semple K.T. Temporal changes in the extractability, bioaccessibility and biodegradation of target hydrocarbons in soils from former refinery facilities // Int. Biodeterioration Biodegradation. 2021. V. 160. 105227. https://doi.org/10.1016/j.ibiod.2021.105227
  71. Trapido M. Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles // Environ. Poll.n. 1999. V. 105. P. 67–74.
  72. Twigg M.V., Phillips P.R. Cleaning the Air We Breathe – Controlling Diesel Particulate Emissions from Passenger Cars // Platinum Metals Review. 2009. V. 53(1). P. 27–34. https://doi.org/10.1595/147106709X390977
  73. Umeh A.C., Duana L., Naidu R., Semple K.T. Extremely small amounts of B[a]P residues remobilised in long-term contaminated soils: A strong case for greater focus on readily available and not total-extractable fractions in risk assessment // J. Hazardous Mater. 2019. V. 368. P. 72–80. https://doi.org/10.1016/j.jhazmat.2019.01.030
  74. Vlasov D., Ramirez O., Luhar A. Road dust in urban and industrial environments: Sources, pollutants, impacts, and management // Atmosphere. 2022. V. 13. P. 607. https://doi.org/10.3390/atmos13040607
  75. Wei Z., Niu S., Wei Y., Liu Y., Xu Y., Yang Y., Zhang P., Zhou Q., Wang J.J. The role of extracellular polymeric substances (EPS) in chemical-degradation of persistent organic pollutants in soil: A review // Sci. Total Environ. 2024. V. 912. P. 168877. https://doi.org/10.1016/j.scitotenv.2023.168877
  76. Wilcke W. Polycyclic aromatic hydracarbons (PAHs) in soil – a review // J. Plant Nutrition Soil Sci. 2000. V. 163. P. 229–248.
  77. Wilcke W. Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil // Geoderma. 2007. V. 141. P. 157–166. https://doi.org/10.1016/j.geoderma.2007.07.007
  78. Wild S.R., Jones K.C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget // Environ. Poll. 1995. V. 88(1). P. 91–108.
  79. Wu S.C., Gschwend P.M. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. // Environ. Sci. Technol. 1986. V. 20. P. 717–725.
  80. Xing A., Pignatello J.J. Dual-mode sorption of low polarity compounds in glassy poly(vinyl chloride) and soil organic matter // Environ. Sci. Technol. 1997. V. 31. P. 792–799.
  81. Yemele O.M., Zhao Z., Nkoh J.N., Ymele E., Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution // Sci. Total Environ. 2024. V. 926. P. 171577. https://doi.org/10.1016/j.scitotenv.2024.171577
  82. Yu L., Duan L., Naidu R., Semple K.T. Abiotic factors controlling bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons in soil: Putting together a bigger picture // Sci. Total Environ. 2018. V. 613–614. P. 1140–1153. https://doi.org/10.1016/j.scitotenv.2017.09.025
  83. Yu L., Duan L., Naidu R., Meng F., Semple K.T. Effects of source materials on desorption kinetics of carcinogenic PAHs from contaminated soils // Chemosphere. 2023. V. 335. P. 139095. https://doi.org/10.1016/j.chemosphere.2023.139095
  84. Yuan S.Y., Chang J.S., Yen J.H., Chang B.V. Biodegradation of phenanthrene inriver sediment // Chemosphere. 2001. V. 43. P. 273–278.
  85. Zavgorodnyaya Y.A., Chikidova A.L., Biryukov M.V., Demin V.V. Polycyclic aromatic hydrocarbons in atmospheric particulate depositions and urban soils of Moscow, Russia // J. Soils Sediments. 2019. V. 19. P. 3155–3165. https://doi.org/10.1007/s11368-018-2067-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix

Download (109KB)
3. Fig. 1. Change in the availability of an organic compound with increasing contact time of the compound and soil (ISO/TS 16751:2020(en)).

Download (81KB)
4. Fig. 2. Change in the total content (graphs on the left) and the content of the bioavailable fraction (graphs on the right) of phenanthrene (a), pyrene (b), benzo(a)pyrene (c) in soils during the model experiment (average value for three replicates; error bars are standard deviation).

Download (284KB)
5. Fig. 3. Dependence of the biodegradation rate of PAHs ((a) – phenanthrene, (b) – pyrene, (c) – benzo(a)pyrene) on the content of their bioavailable fraction in soils; empty markers – uncontaminated soils, filled markers – soils contaminated with APV (average value for three replicates; error bars are standard deviation).

Download (216KB)
6. Fig. 4. Changes in potential bioavailability of PAHs ((a) – phenanthrene, (b) – pyrene, (c) – benzo(a)pyrene) during the model experiment (upper line – total PAH content, % of the initial; lower line – content of the hard-to-reach PAH fraction, % of the initial).

Download (388KB)
7. Fig. 5. Conceptual scheme of changes in PAH bioavailability from aerial dust fallout (ADF) in soil horizons with different organic matter content (the thickness of the arrows indicates the intensity of PAH transition to the bioavailable fraction). (a) – uncontaminated soils and ADF; (b) – first stage of ADF transformation in soils (0–3 months); (c) – second stage of ADF transformation in soils (3–12 months).

Download (450KB)
8. Table 2 figure 1

Download (3KB)
9. Table 2 figure 2

Download (4KB)
10. Table 2 figure 3

Download (5KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».