Chemical and microbiological characteristics of soils formed during self-growing of waste from the enrichment of rare metal ores in the subarctic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of rare metal ore deposits in the Murmansk region over the past 70 years has been accompanied by the storage of fine-grained enrichment waste, which led to the formation of two tailings fields. The field, which was decommissioned 35 years ago, is undergoing natural overgrowth processes. Studies of the mineral and chemical composition, quantitative and qualitative characteristics of the microbiota of technogenic surface formations (TSF) and soils, formed on waste from the enrichment of loparite ores, have been carried out. With increasing age of TSF, the destruction of weakly stable alkaline minerals was observed simultaneously with an increase in carbon content from 0 to 4.5% in the upper soil horizon. Differential thermal analysis has shown that organic matter of the coarse humus horizon of the conditionally background soil had a more complex composition in comparison with the organic matter formed on the material of the tailings of rare metal ores. An increase in the number and biomass of bacteria and microscopic fungi, the species diversity of micromycetes, and a leveling of the functional profile of microorganisms during the transition from the initial tailings material to areas with vegetation were noted. The results obtained can form the basis for the development of a nature-based technology for initializing the soil-forming process using indigenous strains of microorganisms that are resistant to the unfavorable conditions of rare metal tailings.

Full Text

Restricted Access

About the authors

Е. А. Krasavtseva

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Author for correspondence.
Email: e.krasavtseva@ksc.ru

Centre of Nanomaterials Science, Institute of North Industrial Ecology Problems

Russian Federation, Аpatity, 184209 Russia

А. S. Soshina

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences; Peoples Friendship University of Russia (RUDN University)

Email: e.krasavtseva@ksc.ru

Institute of North Industrial Ecology Problems

Russian Federation, Аpatity, 184209; Moscow, 117198

T. K. Ivanova

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru

Centre of Nanomaterials Science, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Аpatity, 184209 Russia

I. A. Мosendz

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru

Centre of Nanomaterials Science, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Аpatity, 184209 Russia

V. V. Маksimova

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru

Centre of Nanomaterials Science, Institute of North Industrial Ecology Problems

Russian Federation, Аpatity, 184209 Russia

М. V. Коrneykova

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences; Peoples Friendship University of Russia (RUDN University)

Email: e.krasavtseva@ksc.ru

Institute of North Industrial Ecology Problems

Russian Federation, Аpatity, 184209; Moscow, 117198

N. V. Fokina

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru

Institute of North Industrial Ecology Problems

Russian Federation, Аpatity, 184209

А. А. Chaporgina

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru

Institute of North Industrial Ecology Problems

Russian Federation, Аpatity, 184209

Е. S. Latyuk

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru

Institute of North Industrial Ecology Problems

Russian Federation, Аpatity, 184209

I. R. Еlizarova

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru

Institute of North Industrial Ecology Problems

Russian Federation, Аpatity, 184209

А. А. Shirokaya

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru

Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Аpatity, 184209

А. V. Dolgikh

Institute of Geography of the Russian Academy of Sciences

Email: e.krasavtseva@ksc.ru
Russian Federation, Moscow, 119017

М. V. Slukovskaya

Federal Research Centre “Kola Science Centre” of the Russian Academy of Sciences; Peoples Friendship University of Russia (RUDN University)

Email: e.krasavtseva@ksc.ru

Centre of Nanomaterials Science, Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Аpatity, 184209; Аpatity, 184209; Moscow, 117198

References

  1. Абакумов Е.В. Первичные почвы в природных и антропогенных экосистемах. Автореф. дис. ... докт. биол. наук. Тольятти, 2012. 41 с.
  2. Андроханов В.А. Почвенно-экологическое состояние техногенных ландшафтов: динамика и оценка. Автореф. дис. ... д-р. биол. наук. Новосибирск, 2005. 36 с.
  3. Артамонова В.С. Микробиологические особенности антропогенно трансформированных почв Западной Сибири. Новосибирск: Изд-во СО РАН, 2002. 225 с.
  4. Горбачева Т.Т., Лусис А.В., Иванова Л.А. Химическая мелиорация нефелиновых песков c применением осадка сточных вод регионального предприятия водопроводно-канализационного хозяйства // Вестник МГТУ. 2021. № 24. С. 88–96. https://doi.org/10.21443/1560-9278-2021-24-1-88-96
  5. Горячев А.А., Красавцева Е.А., Лащук В.В., Икконен П.В., Смирнов А.А., Максимова В.В., Макаров Д.В. Оценка экологической опасности и возможности переработки хвостов обогащения лопаритовых руд // Экология и промышленность России. 2020. № 24. С. 46–51. https://doi.org/10.18412/1816-0395–2020-12-46-51
  6. Горячкин С.В., Мергелов Н.С., Таргульян В.О. Генезис и география почв экстремальных условий: элементы теории и методические подходы // Почвоведение. 2019. № 1. С. 5–19. https://doi.org/10.1134/S0032180X19010040
  7. Грум-Гржимайло О.А., Биланенко Е.Н. Комплексы микромицетов верховых болот побережья Кандалакшского залива Белого моря //Микология и фитопатология. 2012. Т. 46. № 5. С. 297–305.
  8. Дабах Е.В. Редкоземельные элементы в почвах и растениях луговых биоценозов // Теоретическая и прикладная экология. 2021. № 4. С. 104–111. https://doi.org/10.25750/1995–4301-2021-4-104-111
  9. Добровольская Т.Г., Бызов Б.А., Гузев В.С., Кожевин П.А., Лысак Л.В., Полянская Л.М., Зенова Г.М., Марфенина О.Е., Степанов А.Л., Умаров М.М., Кураков А.В. Методы почвенной микробиологии и биохимии. М.: Изд-во МГУ, 1991. 304 с.
  10. Добровольская Т.Г., Звягинцев Д.Г., Чернов И.Ю., Головченко А.В., Зенова Г.М., Лысак Л.В., Манучарова Н.А., Марфенина О.Е., Полянская Л.М., Степанов А.Л., Умаров М.М. Роль микроорганизмов в экологических функциях почв // Почвоведение. 2015. № 9. С. 1087–1087. https://doi.org/10.7868/S0032180X15090038
  11. Евдокимова Г.А., Мозгова Н.П. Сравнительная характеристика микробной биомассы AI-FE-гумусовых подзолов Кольского полуострова // Почвоведение. 2001. № 12. С. 1465–1472.
  12. Евдокимова Г.А., Корнейкова М.В., Лебедева Е.В. Сообщества микромицетов в почвах в зоне воздействия алюминиевого завода // Микология и фитопатология. 2007. Т. 41. № 1. С. 20–28.
  13. Евдокимова Г.А., Корнейкова М.В., Лебедева Е.В., Калмыкова В.В. Микромицеты в песках и песчаных почвах природного и техногенного генезиса // Микология и фитопатология. 2009. Т. 43. № 2. С. 84–92.
  14. Евдокимова Г.А., Переверзев В.Н., Зенкова И.В., Корнейкова М.В., Редькина В.В. Эволюция техногенных ландшафтов (на примере отходов апатитовой промышленности). Апатиты: Изд-во Кольского научного центра, 2010. 146 с.
  15. Звягинцев А.Г., Бабьева И.П., Зенова Г.М. Биология почвы. М.: Изд-во Моск. ун-та, 2005. 445 с.
  16. Калмыкова В.В. Биологическая активность кузоменских песков Мурманской области // Глубокая переработка минеральных ресурсов. Апатиты: КНЦ РАН, 2008. С. 172–175.
  17. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. http://infosoil.ru (дата обращения 15.04.2024).
  18. Копцик Г.Н. Современные подходы к ремедиации почв, загрязненных тяжелыми металлами (обзор литературы) // Почвоведение. 2014. № 7. С. 851. https://doi.org/10.7868/S0032180X14070077
  19. Корнейкова М.В. Сравнительный анализ численности и структуры комплексов микроскопических грибов в почвах тундры и тайги Кольского Севера // Почвоведение. 2018. № 1. С. 86–92. https://doi.org/10.7868/S0032180X18010094
  20. Корнейкова М.В., Никитин Д.А. Качественные и количественные характеристики почвенного микробиома в зоне воздействия выбросов Кандалакшского алюминиевого завода // Почвоведение. 2021. № 6. С. 725–734. https://doi.org/10.31857/S0032180X21060083
  21. Красавина Т.Н., Розинова Е.Л., Касатов Б.К., Иванова В.П. Термический анализ минералов и горных пород / Под ред. Ивановой В.П. Л.: Недра, 1974. 339 с.
  22. Ладонин Д.В. Формы соединений тяжелых металлов в техногенно загрязненных почвах. Автореф. дис. ... докт. биол. наук. М., 2016. 42 с.
  23. Лебедева М.П., Кутовая О.В., Сиземская М.Л., Хохлов С.Ф. Микроморфологическая и микробиологическая диагностика первичного почвообразования на днище искусственного понижения в условиях полупустыни Северного Прикаспия // Почвоведение. 2014. № 11. С. 1332. https://doi.org/10.7868/S0032180X14110069
  24. Махонина Г.И. Состав гумуса почв, образующихся на буроугольных отвалах при естественном зарастании // Проблемы рекультивации земель в СССР. Новосибирск: Наука, 1974. С. 205–209.
  25. Павлова Л.М., Куимова Н.Г., Римкевич О.В. Биотехнологический потенциал фосфатмобилизующих бактерий в процессах рекультивации посттехногенных ландшафтов // Вестник ДВО РАН. 2008. № 3. С. 44–50.
  26. Павлова Л.М., Шумилова Л.П. Микробно-растительные сообщества в техногенных грунтах россыпной золотодобычи // Международный журнал гуманитарных и естественных наук. 2021. № 12. С. 7–13. https://doi.org/10.24412/2500-1000-2021-12-3-7-13
  27. Павлович Н.В., Кокин А.В., Силаев В.И., Аронова Н.В., Цимбалистова М.В., Киселева Д.В., Слюсарь А.В. Сравнительный анализ состава микроэлементов у бактерий различных видов // Актуальные вопросы изучения особо опасных и природно-очаговых болезней: Сб. ст. науч.-пр. конф. Ростов-на-Дону, 25–26 сентября 2019 года. Новосибирск, 2019. С. 309–313.
  28. Переверзев В.Н. Генетические особенности почв природных поясов хибинских гор (Кольский полуостров) // Почвоведение. 2010. № 5. С. 548–557.
  29. Переверзев В.Н., Ивлиев А.И., Горбунов А.В., Ляпунов С.М. Первичное почвообразование на отвалах обогащения апатито-нефелиновых руд Кольского полуострова // Почвоведение. 2007. № 8. С. 1006–1013.
  30. Переломов Л.В., Асаинова Ж.С., Йошида С., Иванов И.В. Содержание редкоземельных элементов в почвах Приокско-террасного биосферного заповедника // Почвоведение. 2012. № 10. С. 1115.
  31. Приймак Т.И., Зосин А.П., Федоренко Ю.В., Кошкина Л.Б., Калабин Г.В. Экологические аспекты процессов геохимической трансформации хвостов обогащения апатито-нефелиновых руд Хибинского месторождения. Апатиты: КНЦ РАН, 1998. 51 с.
  32. Рой А.А., Рева О.Н., Курдиш И.К., Смирнов В.В. Биологические свойства фосфатмобилизующего штамма Bacillus subtilis ИМВ В-7023 // Прикладная биохимия и микробиология. 2004. № 40. С. 551–557.
  33. Сиромля Т.И. К вопросу о подвижных формах соединений химических элементов в почвах // Сибирский экологический журнал. 2009. № 16. С. 307–318.
  34. Сумина О.И., Власов Д.Ю., Долгова Л.Л., Сафронова Е.В. Особенности формирования сообществ микромицетов в зарастающих песчаных карьерах севера Западной Сибири // Вестник СПб. ун-та. Сер. 3. Биология. 2010. № 2. С. 84–90.
  35. Allingham S.M., Nwaishi F.C., Andersen R., Lamit L.J., Elliott D.R. Microbial communities and biogeochemical functioning across peatlands in the Athabasca Oil Sands region of Canada: Implications for reclamation and management // Land Degradation Development. 2023. V. 34. P. 1504–1521. https://doi.org/10.1002/ldr.4549
  36. Baffi C., Dell’Abate M. T., Nassisi A., Silva S., Benedetti A., Genevini P. L., Adani F. Determination of biological stability in compost: A comparison of methodologies // Soil Biol. Biochem. 2007. V. 39. P. 1284–1293. https://doi.org/10.1016/j.soilbio.2006.12.004
  37. Bogorodskaya A.V., Krasnoshchekova E.N., Trefilova O.V., Shishikin A.S. Seasonal dynamics of the development of microbiocenoses and invertebrate complexes on overburden dumps of the Borodino brown coal mine (KATEK) // Geography and Natural Resources. 2010. V. 4. P. 36–45. https://doi.org/10.1016/j.gnr.2010.11.005
  38. Bubnova E.N. Diversity of the microscopic fungi in the littoral sands of the White Sea // Moscow University Biological Sciences Bulletin. 2017. V. 72. P. 121–127.
  39. Campbell C.D., Chapman S.J., Cameron C.M., Davidson M.S., Potts J.M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil // Appl. Environ. Microbiol. 2003. V. 69. P. 3593–3599. https://doi.org/10. 1128/AEM.69.6.3593
  40. Clarholm M., Skyllberg U., Rosling A. Organic acid induced release of nutrients from metal-stabilized soil organic matter–the unbutton model // Soil Biol. Biochem. 2015. V. 84. P. 168–176. https://doi.org/10.1016/j.soilbio.2015.02.019
  41. Cong Y., Yu R.L., Yan Y., Weng B.S., Hu G.R., Sun J.W., Cui J.-Y., YanYan, Huang Y.Y. Source analysis of metals in the tea plant using linear correlation analysis combined with a lead-strontium isotope tracer // Catena. 2023. V. 229. P. 107194. https://doi.org/10.1016/j.catena.2023.107194
  42. Costa O.Y., Oguejiofor C., Zühlke D., Barreto C.C., Wünsche C., Riedel K., Kuramae E.E. Impact of different trace elements on the growth and proteome of two strains of Granulicella, class “Acidobacteriia” // Front. Microbiol. 2020. V. 11. P. 1227. https://doi.org/10.3389/fmicb.2020.01227
  43. Domsch K.H., Gams W., Anderson T.H. Compendium of soil fungi. Heidelberg: IHW–Verlag, 2007. 672 p.
  44. Fedotov P.S., Rogova O.B., Dzhenloda R.Kh., Karandashev V.K. Metal-organic complexes as a major sink for rare earth elements in soils // Environ. Chem. 2019. V. 16. № 5. P. 323–332. https://doi.org/10.1071/EN18275
  45. Forghani G., Mokhtari A.R., Kazemi G.A., Fard M.D. Total concentration, speciation and mobility of potentially toxic elements in soils around a mining area in central Iran // Geochemistry. 2015. V. 75. P. 323–334. https://doi.org/10.1016/j.chemer.2015.05.001
  46. Glotov V.E., Chlachula J., Glotova L.P., Little E. Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East // Engineering Geology. 2018. V. 245. P. 236–247. https://doi.org/10.1016/j.enggeo.2018.08.012
  47. Gómez-Brandón M., Herbón C., Probst M., Fornasier F., Barral M.T., Paradelo R. Influence of land use on the microbiological properties of urban soils // Appl. Soil Ecology. 2022. V. 175. P. 104452. https://doi.org/10.1016/j.apsoil.2022.104452
  48. Huang X., Deng H., Zheng C., Cao G. Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo tailing pond in northwest China // Sci. Total Environ. 2016. V. 543. P. 357–372. https://doi.org/10.1016/j.scitotenv.2015.10.150
  49. Index Fungorum. http://www.indexfungorum.org (дата обращения 15.04.2024)
  50. IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. Vienna: International Union of Soil Sciences (IUSS), 2022.
  51. Ivashchenko K., Lepore E., Vasenev V., Ananyeva N., Demina S., Khabibullina F., Vaseneva I., Selezneva A., Dolgikh A., Sushko S., Marinari S., Dovletyarova E. Assessing soil-like materials for ecosystem services provided by constructed Technosols // Land. 2021. V. 10. P. 1185. https://doi.org/10.3390/land10111185
  52. Ivashchenko K., Sushko S., Selezneva A., Ananyeva N., Zhuravleva A., Kudeyarov V., Makarov M., Blagodatsky S. Soil microbial activity along an altitudinal gradient: vegetation as a main driver beyond topographic and edaphic factors // Appl. Soil Ecol. 2021. V. 1685. P. 104197. https://doi.org/10.1016/j.apsoil.2021.104197
  53. Kasatkina E.A., Shumilov O.I., Kirtsideli I.Yu., Makarov D.V. Bioleaching potential of microfungi isolated from Arctic loparite ore tailings (Kola Peninsula, Northwestern Russia) // Geomicrobiol. J. 2023. V. 40. P. 285–294. https://doi.org/10.1080/01490451.2022.2162166
  54. Kavamura V.N., Esposito E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals // Biotechnol. Adv. 2010. V. 28. P. 61–69. https://doi.org/10.1016/j.biotechadv.2009.09.002
  55. Klich M.A. Identification of Common Aspergillus Species. Utrecht, The Netherlands: CBS Fungal Biodiversity Centre, 2002.
  56. Kooistra M.J., Pulleman M.M. Features Related to Faunal Activity // Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, 2018. P. 447–469. https://doi.org/10.1016/B978-0-444-63522-8.00016-4
  57. Kossoff D., Dubbin W.E., Alfredsson M., Edwards S.J., Macklin M.G., Hudson-Edwards K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation // Appl. Geochem. 2014. V. 51. P. 229–245. https://doi.org/10.1016/j.apgeochem.2014.09.010
  58. Krasavtseva E.A., Ivanova T.K., Maksimova V.V., Mosendz I.A., Kanareykina I.P., Panikorovskii T.L., Shirokaya A.A., Slukovskaya M.V. Improvement of the hydrophysical properties of substrates of technogenic landscapes using expanded vermiculite // IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 848. P. 12144. https://doi.org/10.1088/1755-1315/848/1/012144
  59. Krasavtseva E.A., Maksimova V.V., Elizarova E.I., Malysheva M.B. Assessment of Soil Pollution by Rare Earth Elements in the Area Affected by the Rare Metal Plant in Russia // Euras. Soil Sci. 2023. V. 56. № S2. P. S194–S201. https://doi.org/10.1134/s1064229323601403
  60. Krasavtseva E., Maksimova V., Makarov D., Potorochin E. Modelling of the chemical halo of dust pollution migration in loparite ore tailings storage facilities // Minerals. 2021. V. 11. P. 10. https://doi.org/10.3390/min11101077
  61. Krasavtseva E.A., Maksimova V.V., Makarov D.V., Selivanova E.A., Ikkonen P.V. Studies of Properties and Composition of Loparite Ore Mill Tailings // J. Mining Sci. 2021. V. 57. P. 531–538. https://doi.org/10.1134/S1062739121030182
  62. Kumar S., Abedin M.M., Singh A.K., Das S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. // Plant Phenolics in Sustainable Agriculture. Springer, 2020. https://doi.org/10.1007/978-981-15-4890-1_22
  63. Lagomarsino A., Knapp B.A., Moscatelli M.C., de Angelis P., Grego S., Insam H. Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation // J. Soils Sediments. 2007. V. 7 P. 399–405. https://doi.org/10.1065/jss2007.04.223
  64. Liu J., Du C., Beaman H.T., Monroe M.B.B. Characterization of phenolic acid antimicrobial and antioxidant structure–property relationships // Pharmaceutics. 2020. V. 12. P. 419. https://doi.org/10.3390/pharmaceutics12050419
  65. Marinari S., Bonifacio E., Moscatelli M. C., Falsone G., Antisari L. V., Vianello G. Soil development and microbial functional diversity: Proposal for a methodological approach // Geoderma. 2013. V. 192. P. 437–445. https://doi.org/10.1016/j.geoderma.2012.08.023
  66. Minkina T.M., Mandzhieva S.S., Burachevskaya M.V., Bauer T. V. Sushkova S. N. Method of determining loosely bound compounds of heavy metals in the soil // Methods X. 2018. V. 5. P. 217–226. https://doi.org/10.1016/j.mex.2018.02.007
  67. Moscatelli M.C., Secondi L., Marabottini R., Papp R., Stazi S.R., Mania E., Marinari S. Assessment of soil microbial functional diversity: land use and soil properties affect CLPP-MicroResp and enzymes responses // Pedobiologia. 2018. V. 66. P. 36–42. https://doi.org/10.1016/j.pedobi.2018.01.001
  68. Nosanchuk J.D., Stark R.E., Casadevall A. Fungal melanin: what do we know about structure? // Front. Microbiol. 2015. V. 6. P. 1463. https://doi.org/10.3389/fmicb.2015.01463
  69. Panikorovskii T.L., Mikhailova J.A., Pakhomovsky Y.A., Bazai A.V., Aksenov S.M., Kalashnikov A.O., Krivovichev S.V. Zr-Rich Eudialyte from the Lovozero peralkaline massif, Kola Peninsula, Russia // Minerals. 2021. V. 11. P. 982. https://doi.org/10.3390/min11090982
  70. Plante A.F., Fernández J.M., Leifeld J. Application of thermal analysis techniques in soil science lication of thermal analysis techniques in soil science // Geoderma. 2009. V. 153. P. 1–10. https://doi.org/10.1016/j.geoderma.2009.08.016
  71. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (дата обращения 15.04.2024)
  72. Redkina V.V., Korneykova M.V., Shalygina R.R. Microorganisms of the technogenic landscapes: The Case of nepheline-containing sands, the Murmansk Region // Processes and phenomena on the boundary between biogenic and abiogenic nature. Springer, 2020. P. 561–579.
  73. Rokade K., Mali G. Biodegradation of chlorpyrifos by Pseudomonas desmolyticum NCIM 2112 // Int. J. Pharma Bio Sci. 2013. V. 4. P. B609–B616.
  74. Salminen R. et al. Geochemical Atlas of Europe. Part 1. Background Information, Methodology and Maps. Espoo: Geological Survey of Finland, 2005. 526 p.
  75. Seifert K., Morgan-Jones G., Gams W., Kendrick B. The Genera of Hyphomycetes; Biodiversity Series. CBS, Reus: Utrecht, The Netherlands, 2011. № 9. P. 1–997.
  76. Sessitsch A., Kuffner M., Kidd P., Vangronsveld J., Wenzel W. W., Fallmann K., Puschenreiter M. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils // Soil Biol. Biochem. 2013. V. 60. P. 182–194. https://doi.org/10.1016/j.soilbio.2013.01.012
  77. Shamshiripour M., Motesharezadeh B., Rahmani H. A., Alikhani H. A., Etesami H. Optimal concentrations of silicon enhance the growth of soybean (Glycine Max L.) cultivars by improving nodulation, root system architecture, and soil biological properties // Silicon. 2022. V. 14(10). P. 5333–5345. https://doi.org/10.1007/s12633-021-01273-3
  78. Shannon C., Weaver W. The mathematical theory of communication. Champaign-Urbana. US: The University of Illinois Press, 1964. 131 p.
  79. Šimonovičová A., Kraková L., Pauditšová E., Pangallo D. Occurrence and diversity of cultivable autochthonous microscopic fungi in substrates of old environmental loads from mining activities in Slovakia // Ecotoxicol. Environ. Saf. 2019. V. 172. P. 194–202. https://doi.org/10.1016/j.ecoenv.2019.01.064
  80. Terekhova V.A., Ivanova A.E., Shitikov V.K., Kydralieva K.A. Assessment of the ecological risk of technogenic soil pollution on the basis of the statistical distribution of the occurrence of micromycete species // Russ. J. Ecology. 2017. V. 48. № 5. P. 417–424. https://doi.org/10.1134/S1067413617050125
  81. Wang B., Chu C., Wei H., Zhang L., Ahmad Z., Wu S., Xie B. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals // Environ. Pollut. 2020. V. 267. P. 115411. https://doi.org/10.1016/j.envpol.2020.115411
  82. Wang L., Ji B., Hu Y., Liu R., Sun W. A review on in situ phytoremediation of mine tailings // Chemosphere. 2017. V. 184. P. 594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025
  83. Wang P., Sun Z., Hu Y., Cheng H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact // Sci. Total Environ. 2019. V. 695. P. 133893. https://doi.org/10.1016/j.scitotenv.2019.133893
  84. Ward J.H. Hierarchical grouping to optimize an objective function // J. Am. Stat. Assoc. 1963. V. 58. P. 236–244. https://doi.org/10.1080/01621459.1963.10500845
  85. Wolfaardt G.M., Hendry M.J., Korber D.R. Microbial distribution and diversity in saturated, high pH, uranium mine tailings, Saskatchewan, Canada // Can. J. Microbiol. 2008. V. 54. № 11. P. 932–940. https://doi.org/10.1139/w08-084
  86. Wu Y.F., Wang Y.Z., Zhang X.Y. Mobilization of P by low molecular weight organic acids in a calcareous, neutral and acid soil with low available P status // Energy, Environmental & Sustainable Ecosystem Development. International Conference on Energy, Environmental & Sustainable Ecosystem Development (EESED 2015). Yunnan, 21–23 August 2015. P. 1–12. https://doi.org/10.1142/9789814723008_0118
  87. Xu L., Lofts S., Lu Y. Terrestrial ecosystem health under long‐term metal inputs: modeling and risk assessment // Ecosystem Health and Sustainability. 2016. V. 2. P. 11879026. https://doi.org/10.1002/ehs2.1214
  88. Zhang J., Li S., Sun X., Tong J., Fu Z., Li J. Sustainability of urban soil management: analysis of soil physicochemical properties and bacterial community structure under different green space types // Sustainability. 2019. V. 11. P. 1395. https://doi.org/10.3390/su11051395
  89. Zhu R.L., Wang D., Xu L., Shi R.-P., Wang J., Zheng M. Antibacterial activity in extracts of some bryophytes from China and Mongolia // J. Hattori Botanical Laboratory. 2006. V. 100. P. 603–615.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (2MB)
3. Fig. 1. Map-scheme of the location and appearance of sampling sites: 1 – AI, 2 – AV, 3 – AO, 4 – AP.

Download (322KB)
4. Fig. 2. DSC curves of samples: 1 – AV, 2 – AO (5–10 cm layer), 3 – AO (0–5 cm layer), 4 – AP.

Download (67KB)
5. Fig. 3. Fractional composition of micro- and macrocomponents in samples: (a) – AI, (b) – AV, (c) – AO (5–10 cm layer), (d) – AO (0–5 cm layer), (e) – AP.

Download (403KB)
6. Fig. 4. Heat map (a) reflecting the respiratory response (RR) of the microbial community to the introduction of various organic substrates and the Shannon functional diversity index (b) in soil samples: Glu, D – glucose; Fru, D – fructose; Gal, D – galactose; Lc, L – leucine; SR – syringic acid; Gl – glycine; Arg, L – arginine; Amb, α – aminobutyric acid; LAS, L – aspartic acid; Asc – ascorbic acid; Cit – citric acid; Ox – oxalic acid; Vh – vanillic acid. Letters above the columns indicate the presence/absence of statistically significant differences between samples at p < 0.05.

Download (247KB)
7. Fig. 5. Component analysis showing the relationship between physicochemical and microbiological parameters for the exchangeable (a) and acid-soluble (b) fractions. CR is the respiratory response (RR) of the microbial community to the addition of carboxylic acids, VR is the RR to the addition of carbohydrates, AC is the RR to the addition of amino acids, FC is the RR to the addition of phenolic acids, Hfungi is the Shannon diversity index for fungal communities, Hclpp is the Shannon functional diversity index.

Download (172KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».