An approach to the integral assessment of soils in moscow forest parks in the context of ecosystem services and disservices
- Authors: Ananyeva N.D.1, Ivashchenko K.V.1,2, Urabova S.А.1, Vasenev V.I.2,3, Dolgikh A.V.4, Gorbacheva A.Y.5, Dovletyarova E.A.2
-
Affiliations:
- Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
- Peoples’ Friendship University of Russia
- Soil Geography and Landscape Group, Wageningen University
- Institute of Geography of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: No 12 (2024)
- Pages: 1890-1905
- Section: DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
- URL: https://journals.rcsi.science/0032-180X/article/view/282687
- DOI: https://doi.org/10.31857/S0032180X24120157
- EDN: https://elibrary.ru/JCHLCR
- ID: 282687
Cite item
Abstract
Ecosystem services are a modern tool of environmental assessment, planning and design, especially in large cities. In urban forest parks of Moscow (Aleshkinsky, Bitsevsky, Lesnaya experimental dacha, Troparevsky, Lianozovsky, Yugo-Zapadny) and suburban (background) forests, samples of the upper 10 cm layer of sod-podzolic soil (Albic Retisols) were taken. In forest parks, 30 samples (6×5 sites) were selected, in background areas – 20 (4×5 sites), a total of 50. The content of carbon (C), nitrogen (N), phosphorus (P), and heavy metals (TM: Pb, Cu, Ni, Zn), nitrate nitrogen (N–NO3–); C, N, P of microbial biomass (Cmic, Nmic, Pmic) by fumigation-extraction method and basal (microbial) respiration (BR). The proportion of Cmic, Nmic, and Pmic in the content of these elements in the soil was calculated (Cmic/C, Nmic/N, Pmic/P). The BR, Cmic/C, Nmic/N and Pmic/P), which can characterize the cycles of biophilic elements in the soil, are proposed to be associated with supporting ecosystem services, and pollution (HM, N–NO3–) – with ecosystem disservice. It was revealed that the BR, Cmic/C, Nmic/N and Pmic/P of each studied forest park were on average 4–72% less than the background analogue, and chemical (Pb, Cu, Ni, Zn, N–NO3–) – on the contrary, more by 14–194%. To quantify these ecologically multidirectional soil properties, the calculation of the integral index (II, in points) of the soil was proposed, which in urban forest parks was 32–72% less than the background analogue (it is taken as one). It turned out that the value of soil II in the Bitsevsky forest park (area, 2208 ha) was the largest (0.68 points), and in Lianozovsky (44 hectares) it was the smallest (0.28 points).
Keywords
About the authors
N. D. Ananyeva
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Author for correspondence.
Email: ananyeva@rambler.ru
ORCID iD: 0000-0002-0434-6071
Russian Federation, Pushchino, Moscow oblast
K. V. Ivashchenko
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences; Peoples’ Friendship University of Russia
Email: ananyeva@rambler.ru
ORCID iD: 0000-0002-3793-3977
Russian Federation, Pushchino, Moscow oblast; Moscow
S. А. Urabova
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Email: ananyeva@rambler.ru
ORCID iD: 0009-0009-7346-0853
Russian Federation, Pushchino, Moscow oblast
V. I. Vasenev
Peoples’ Friendship University of Russia; Soil Geography and Landscape Group, Wageningen University
Email: ananyeva@rambler.ru
ORCID iD: 0000-0003-0286-3021
Russian Federation, Moscow; Wageningen, Netherlands
A. V. Dolgikh
Institute of Geography of the Russian Academy of Sciences
Email: ananyeva@rambler.ru
ORCID iD: 0000-0002-9316-9440
Russian Federation, Moscow
A. Yu. Gorbacheva
Lomonosov Moscow State University
Email: ananyeva@rambler.ru
ORCID iD: 0000-0002-7097-5378
Russian Federation, Moscow
E. A. Dovletyarova
Peoples’ Friendship University of Russia
Email: ananyeva@rambler.ru
ORCID iD: 0000-0003-4296-9015
Russian Federation, Moscow
References
- Ананьева Н.Д., Иващенко К.В., Сушко С.В. Микробные показатели городских почв и их роль в оценке экосистемных сервисов (обзор) // Почвоведение. 2021. № 10. С. 1231–1246. https://doi.org/10.31857/S0032180X21100038
- Ананьева Н.Д., Хатит Р.Ю., Иващенко К.В., Сушко С.В., Горбачева А.Ю., Долгих А.В., Кадулин М.С., Сотникова Ю.Л., Васенев В.И., Комарова А.Е., Юдина А.В., Довлетярова Э.А. Биофильные элементы (С, N, Р) и дыхательная активность микробного сообщества почв лесопарков Москвы и пригородных лесов // Почвоведение. 2023. № 1. С. 102–117. https://doi.org/10.31857/S0032180X22600780
- Васенев В.И., Ван Ауденховен А.П., Ромзайкина О.Н., Гаджиагаева Р.А. Экологические функции и экосистемные сервисы городских и техногенных почв: от теории к практическому применению (обзор) // Почвоведение. 2018. № 10. С. 1177–1191. https://doi.org/10.1134/S0032180X18100131
- Герасимова М.И., Строганова М.Н., Можарова Н.В., Прокофьева Т.В. Антропогенные почвы: генезис, география, рекультивация. Смоленск: Ойкумена, 2003. 268 с.
- Добровольская Т.Г., Звягинцев Д.Г., Чернов И.Ю., Головченко А.В., Зенова Г.М., Лысак Л.В., Манучарова Н.А., Марфенина О.Е., Полянская Л.М., Степанов А.Л., Умаров М.М. Роль микроорганизмов в экологических функциях почв // Почвоведение. 2015. № 9. С. 1087–1096. https://doi.org/10.7868/S0032180X15090038
- Доклад о состоянии окружающей среды в городе Москве в 2021 году / Под ред. Кульбачевского А.О. М., 2022. 234 с.
- ГН 2.1.7.2511-09 Ориентировочно-допустимые концентрации (ОДК) химических веществ в почве: Гигиенические нормативы. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2009. 10 с.
- ГН 2.1.7.2041-06 Предельно допустимые концентрации (ПДК) химических веществ в почве: Гигиенические нормативы. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2006. 15 с.
- Кудреватых И.Ю., Иващенко К.В., Ананьева Н.Д., Иванищева Е.А. Атмосферные выпадения соединений азота и свойства почвы лесов Вологодской области // Почвоведение. 2018. № 2. С. 155–164. https://doi.org/10.7868/S0032180X1802003X
- Пляскина О.В., Ладонин Д.В. Загрязнение городских почв тяжёлыми металлами // Почвоведение. 2008. № 7. С. 877–885.
- Семенюк О.В., Бодров К.С., Стома Г.В., Яковлев А.С. Оценка стоимости экосистемных услуг природного парка “Битцевский лес” // Вестник Моск. ун-та. Сер. 17, почвоведение. 2019. № 3. С. 23–30.
- Семенюк О.В., Стома Г.В., Бодров К.С. Оценка стоимости экосистемных услуг городских ландшафтов (на примере г. Москвы) // Почвоведение. 2021. № 12. С. 1535–1548. https://doi.org/10.31857/S0032180X21120108
- Строганова М.Н., Прокофьева Т.В., Прохоров А.Н., Лысак Л.В., Сизов А.П., Яковлев А.С. Экологическое состояние городских почв и стоимостная оценка земель // Почвоведение. 2003. № 7. С. 867–875.
- Юдина А.В., Фомин Д.С., Валдес-Коровкин И.А., Чурилин Н.А. Александрова М.С., Головлева Ю.А., Филиппов Н.В., Ковда И.В., Дымов А.А., Милановский Е.Ю. Пути создания классификации почв по гранулометрическому составу на основе метода лазерной дифракции // Почвоведение. 2020. № 11. С. 1353–1371. https://doi.org/10.31857/S0032180X20110143
- Aber J., McDowell W., Nadelhoffer K., Magill A., Berntson G., Kamakea M., McNulty S., Currie W., Rustad L., Fernandez I. Nitrogen saturation in temperate forest ecosystems // BioScience. 1998. V. 48. Р. 921–934.
- Adhikari K., Hartemink A E. Linking soils to ecosystem services – A global review // Geoderma. 2016. V. 262. P. 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009
- Agren G.I., Bosatta E. Nitrogen saturation of terrestrial ecosystems // Environ. Poll. 1988. V. 54. Р. 185–197.
- Aislabie J., Deslippe J.R. Soil microbes and their contribution to soil services // Ecosystem services in New Zealand – conditions and trends. Lincoln: Manaaki Whenua Press, 2013. P. 112–161.
- Bilyera N., Blagodatskaya E., Yevdokimov I., Kuzyakov Y. Towards a conversion factor for soil microbial phosphorus // Eur. J. Soil Biol. 2018. V. 87. P. 1–8. https://doi.org/10.1016/j.ejsobi.2018.03.002
- Brookes P.C., Landman A., Pruden G., Jenkinson D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil // Soil Biol. Biochem. 1985. V. 17. P. 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
- Chen F.-S., Yavitt J., Hu X.-F. Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China // Appl. Soil Ecol. 2014. V. 75. P. 181–188. http://dx.doi.org/10.1016/j.apsoil.2013.11.011
- Comerford N.B., Franzluebbers A.J., Stromberger M.E., Morris L., Markewitz D., Moore R. Assessment and evaluation of soil ecosystem services // Soil Horizons. 2013. P. 1–14. https://doi.org/10.2136/sh12-10-0028
- Compton J.E., Watrud L.S., Porteous L.A., DeGrood S. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest // Forest Ecology and Management. 2004. V. 196. P. 143–158. https://doi.org/10.1016/j.foreco.2004.03.017
- Costanza R., d’Are R., de Groot R., Farber S., Grasso M., Hannon B., Limburg K., Naeem S., O’Neill R.V., Paruelo J., Raskin R.S., Sutton P., van den Belt M. The value of the world’s ecosystem services and natural capital // Nature. 1997. V. 387. P. 253–260. https://doi.org/10.1038/387253a0
- Environmental Assessment of Soil for Monitoring / Eds. Jones R.J.A. et al. Procedures & Protocols. EUR 23490 EN/5, Office for the Official Publications of the European Communities, Luxembourg. 2008. 165 р. https://doi.org/10.2788/94366
- EU Soil Strategy for 2030 – Reaping the benefits of healthy soils for people, food, nature and climate. Brussels. 17.11.2021 COM (2021) 699 final.
- Ghaley B.B., Porter J.R., Sandhu H.S. Soil-based ecosystem services: a synthesis of nutrient cycling and carbon sequestration assessment methods // Int. J. Biodiversity Science, Ecosystem Services & Management. 2014. V. 10. Р. 177–186. https://doi.org/10.1080/21513732.2014.926990
- Groffman P.M., Pouyat R.V., Cadenasso M.L., Zipperer W.C., Szlavecz K., Yesilonis I.D., Band L.E., Brush G.S. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests // For. Ecol. Manage. 2006. V. 236. P. 177–192.
- Gu Y.-G., Gao Y.-P., Lin Q. Contamination, bioaccessibility and human health risk of heavy // Applied Geochemistry. 2016. V. 67. P. 52–58.
- http://dx.doi.org/10.1016/j.apgeochem.2016.02.004
- Guo R.-Z., Song Y.-B., Dong M. Progress and prospects of ecosystem disservices: an updated literature review // Sustainability. 2022. V. 14. P. 10396. https://doi.org/10.3390/su141610396
- Haines-Young R., Potschin M. The links between biodiversity, ecosystem services and human well-being // Ecosystem Ecology: A New Synthesis. Cambridge: University Press, 2010. P. 110–139. https://doi.org/10.1017/CBO9780511750458.007
- Hu Y., Chen M., Yang Z., Cong M., Zhu X., Jia H. Soil microbial community response to nitrogen application on a Swamp Meadow in the arid region of Central Asia // Front. Microbiol. 2022. V. 12. P. 797306. https://doi.org/10.3389/fmicb.2021.797306
- Hu Y.L., Zeng D.-H., Liu Y.-X., Yu-Lan Zhang Y.-X., Chen Z.-H., Wang Z.-Q. Responses of soil chemical and biological properties to nitrogen addition in a Dahurian larch plantation in Northeast China // Plant and Soil. 2010. V. 333. P. 81-92. https://doi.org/10.1007/s11104-010-0321-6
- ISO 14240-2: Soil quality – determination of soil microbial biomass – Part 2: fumigation-extraction method. Geneva: International Organization for Standardization, 1997.
- ISO 16072. Soil quality – laboratory methods for determination of microbial soil respiration. Geneva: International Organization for Standardization, 2002.
- Jiang Y., Shi L., Guang A. long, Mu Z., Zhan H., Wu Y. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China // Environ. Geochem. Health. 2018. V. 40. P. 2007–2020.
- Joergensen R.G., Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value // Soil Biol. Biochem. 1996. V. 28. P. 33–37. https://doi.org/10.1016/0038-0717(95)00101-8
- Kouno K., Tuchiya Y., Ando T. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method // Soil Biol. Biochem. 1995. V. 27. P. 1353–1357. https://doi.org/10.1016/0038-0717(95)00057-L
- Langella G., Basile A., Giannecchini S., Moccia F.D., Mileti F.A., Munafó M., Pinto F., Terribile F. Soil Monitor: an internet platform to challenge soil sealing in Italy // Land Degradation and Development. 2020. V. 31. P. 2883–2900. https://doi.org/10.1002/ldr.3628
- Laumbach R.J., Kipen H.M. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution // J. Allergy Clinical Immunology. 2012. V. 129. P. 3–11.
- Li D., Lu Q., Cai L., Chen L., Wang H. Characteristics of Soil Heavy Metal Pollution and Health Risk Assessment in Urban Parks at a Megacity of Central China // Toxics. 2023. V. 11. P. 257. https://doi.org/10.3390/toxics11030257
- Liu W., Jiang L., Yang S., Wang Z., Tian R., Peng Z., et al. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment // Ecology. 2020. V. 101. P. 03053. https://doi.org/10.1002/ecy.3053
- Liu X., Duan L., Mo J., Du E., Shen J., Lu X., Zhang Y., Zhou X., He C., Zhang F. Nitrogen deposition and its ecological impact in China: an overview // Environ. Poll. 2011. V. 159. P. 2251–2264. https://doi.org/10.1016/j.envpol.2010.08.002
- Lyytimäki J., Sipilä M. Hopping on one leg – The challenge of ecosystem disservices for urban green management // Urban Forestry Urban Greening. 2009. V. 8. P. 309–315. https://doi.org/10.1016/j.ufug.2009.09.003
- Makarov M.I., Malysheva T.I., Menyailo O.V., Soudzilovskaia N.A., Van Logtestijn R.S.P., Cornelissen J.H.C. Effect of K2SO4 concentration on extractability and isotope signature (δ13C and δ15N) of soil C and N fractions // Eur. J. Soil Sci. 2015. V. 66. Р. 417–426. https://doi.org/10.1111/ejss.12243
- MEA, Millennium Ecosystem Assessment: Ecosystems and human well-being: a framework for assessment. Washington, Covelo, London: Island Press, 2003. 155 p.
- Mielke H.W., Paltzeva A., Gonzales C.R. Novel policies are required to reduce pediatric lead exposure from legacy lead (Pb) in soil and air // Medical Research Archives. 2022. V. 10. https://doi.org/10.18103/mra.v10i10.3260
- Mikhailova E.A., Post C.J., Schlautman M.A., Post G.C., Hamdi A. Zurqani H.A. The Business Side of Ecosystem Services of Soil Systems // Earth. 2020. V. 1. P. 15–34. https://doi.org/10.3390/earth1010002
- Morel J.L., Chenu C., Lorenz K. Ecosystems services provided by soils of urban, industrial, traffic and military areas (SUITMAs) // J. Soils Sediments. 2015. V. 15. P. 1659–1666. https://doi.org/10.1007/s11368-014-0926-0
- Pickett S.T.A., Cadenasso M.L., Grove J.M., Boone C.G., Groffman P.M., Irwin E., Kaushal S.S., Marshall V., McGrath B.P., Nilon C.H., Pouyat R.V., Szlavecz K., Troy A., Warren P. Urban ecological systems: scientific foundations and a decade of progress // J. Environ. Management. 2011. V. 92. P. 331–362.
- Pinder R.W., Davidson E.A., Goodale C.L., Greaver T.L., Herrick J.D., Liu L. Climate change impacts of US reactive nitrogen // Proceedings of the National Academy of Sciences. 2012. V. 109. Р. 7671–7675. https://doi.org/10.1073/pnas.1114243109
- Raza S., Na M., Wang P., Ju X., Chen Z., Zhou J., et al. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands // Glob. Chang. Biol. 2020. V. 26. P. 3738–3751. https://doi.org/10.1111/gcb.15101
- Romzaykina O.N., Vasenev V.I., Paltseva A., Kuzyakov Y.V., Neaman A., Dovletyarova E.A. Assessing and mapping urban soils as geochemical barriers for contamination by heavy metal(loid)s in Moscow megapolis // J. Environ. Quality. 2021. V. 50. P. 22–37. https://doi.org/10.1002/jeq2.20142
- Saccá A., Caracciolo A.B., Di Lenola M., Grenni P. Ecosystem services provided by soil microorganisms // Soil Biological Communities and Ecosystem Resilience, Sustainability in Plant and Crop Protection. Springer Int. Publi. 2017. P. 9–24. https://doi.org/10.1007/978-3-319-63336-7_2.
- Shackleton C.M., Ruwanza S., Sanni G.K.S., Bennett S., De Lacy P., Modipa R., Mtati N., Sachikonye M., Thondhlana G. Unpacking Pandora’s Box: understanding and categorising ecosystem disservices for environmental management and human wellbeing // Ecosystems. 2016. V. 19. P. 587–600. https://doi.org/10.1007/s10021-015-9952-z
- Shapiro J., Báldi A. Accurate accounting: How to balance ecosystem services and disservices // Ecosystem Services. 2014. V. 7. P. 201–202. https://doi.org/10.1016/j.ecoser.2014.01.002
- Sutton M.A., Mason K.E., Sheppard L.J., Sverdrup H., Haeuber R., Hicks W.K. Nitrogen Deposition, Critical Loads and Biodiversity. Springer, 2014. 535 p.
- Varentsov M., Vasenev V., Dvornikov Y., Samsonov T., Klimanova O. Does size matter? Modeling the cooling effect of green infrastructures in a megacity during a heat wave // Sci. Total Environ. 2023. V. 902. P. 165966. https://doi.org/10.1016/j.scitotenv.2023.
- Vasenev V.I., Stoorvogel J.J., Ananyeva N.D., Ivashchenko K.V., Sarzhanov D.A., Epikhina A.S., Vasenev I.I., Valentini R. Quantifying spatial-temporal variability of carbon stocks and fluxes in urban soils: from local monitoring to regional modelling // The carbon footprint handbook. Boca Raton: CRC Press, 2015. P. 185–222.
- von Döhren P., Haase D. Ecosystem disservices research: A review of the state of the art with a focus on cities // Ecological Indicators. 2015. V. 52. P. 490–497. http://dx.doi.org/10.1016/j.ecolind.2014.12.027
- Wallenstein М., McNulty S., Fernandez I.J., Boggs J., Schlesinger W.H. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments // Forest Ecology and Management. 2006. V. 222. P. 459–468. https://doi.org/10.1016/j.foreco.2005.11.002
- Wang C., Liu D., Bai E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition // Soil Biol. Biochem. 2018. V. 120. Р. 126–133. https://doi.org/10.1016/j.soilbio.2018.02.003
- Yan Y., Wang C., Zhang J., Sun Y., et al. Response of soil microbial biomass C, N, and P and microbial quotient to agriculture and agricultural abandonment in a meadow steppe of northeast China // Soil Till. Res. 2022. V. 223. P. 105475. https://doi.org/10.1016/j.still.2022.105475
- Yang J-L, Zhang G-L. Formation, characteristics and eco-environmental implications of urban soils – A review // Soil Sci. Plant Nutr. 2015. V. 61. Р. 30–46. https://doi.org/10.1080/00380768.2015.1035622
- Yang X.J., Wittig V., Jain A.K., Post W. Integration of nitrogen cycle dynamics into the integrated science assessment model for the study of terrestrial ecosystem responses to global change // Global Biogeochem. Cycles. 2009. V. 23. Р. 18–21. https://doi.org/10.1029/2009GB003474
- Yevdokimov I., Larionova A., Blagodatskaya E. Microbial immobilisation of phosphorus in soils exposed to drying-rewetting and freeze-thawing cycles // Biol. Fertil. Soils. 2016. V. 52. P. 685–696. https://doi.org/10.1007/s00374-016-1112-x
- Zhang G., Burghardt W, Yang J. Chemical criteria to assess risk of phosphorous leaching from urban soils // Pedosphere. 2005. V. 15. Р. 72–77.
- Zhang T., Chen H.Y.H., Ruan H. Global negative effects of nitrogen deposition on soil microbes // ISME J. 2018. https://doi.org/10.1038/s41396-018-0096-y
- Zhou Z., Wang C., Zheng M., Luo Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition // Soil Biol. Biochem. 2017. V. 115. Р. 433–441. https://doi.org/10.1016/j.soilbio.2017.09.015
- Zhuang Q., Lu Y., Chen M. An inventory of global N2O emissions from the soils of natural terrestrial ecosystems// Atmospheric Environment. 2012. V. 47. Р. 68–75.
- Zwetsloot M.J., Bongiorno G., Barel J.M., di Lonardo D.P., Creamer R.E. A flexible selection tool for the inclusion of soil biology methods in the assessment of soil multifunctionality // Soil Biol. Biochem. 2022. V. 166. P. 108514. https://doi.org/10.1016/j.soilbio.2021.108514
Supplementary files
