Estimation of Carbon Stocks in Soils of Forest Ecosystems as a Basis for Monitoring Climatically Active Substances

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The eluvozems and soddy eluvozems on two-layer deposits dominating in the soil cover of the Zvenigorod biostation of Moscow State University contain, on average, 65–83 t/ha of organic carbon in the litter and a meter-deep layer of mineral strata. Carbon stocks are minimal in the soddy eluvozem of the complex spruce forest (59–68 t/ha), which is characterized by a lighter granulometric composition, and reach 76–92 t/ha in the soils of the birch–spruce and complex pine–spruce forests. At the same time, 3.3–5.8 t C/ha or 4–9% of the total organic carbon reserves are concentrated in the litter, and 64–69% in the upper mineral layer (0–20 cm). Different levels and profile distribution of organic carbon reserves in soils are determined by lithological and granulometric features and the nature of vegetation. The contribution of water-extractable organic carbon compounds to their total content in the upper mineral horizons of soils does not exceed 1.3–1.8%, microbial carbon, 1.7–2.4%. In acidic light loamy soils, the enrichment in calcium and potassium, the cation exchange capacity, the content of exchangeable bases, and the degree of saturation can serve as indicators of the content and reserves of organic carbon at the ecosystem level. The relationship with the content of finely dispersed fractions and oxalate-extractable Al and Fe is manifested to a lesser extent due to the similar origin and properties of soils. The variability of organic carbon stocks in soils is determined to the greatest extent by its content, the influence of which decreases with depth. Accounting for spatial heterogeneity, field measurements of the density and proportion of fine earth, and correct analytical determinations are essential components of the assessment of carbon stocks in soils of forest ecosystems as part of a national monitoring system for carbon pools and greenhouse gas fluxes under development.

About the authors

G. N. Koptsik

Soil Science Faculty, Lomonosov Moscow State University

Author for correspondence.
Email: koptsikg@mail.ru
Russia, 119991, Moscow

S. V. Koptsik

Faculty of Physics, Lomonosov Moscow State University

Email: koptsikg@mail.ru
Russia, 119991, Moscow

I. V. Kupriianova

Soil Science Faculty, Lomonosov Moscow State University; UNESCO Department, Yugra State University

Email: koptsikg@mail.ru
Russia, 119991, Moscow; Russia, 628012, Khanty-Mansiysk

M. S. Kadulin

Soil Science Faculty, Lomonosov Moscow State University

Email: koptsikg@mail.ru
Russia, 119991, Moscow

I. E. Smirnova

Soil Science Faculty, Lomonosov Moscow State University

Email: koptsikg@mail.ru
Russia, 119991, Moscow

References

  1. Абакумов Е.В., Поляков В.И., Чуков С.Н. Подходы и методы изучения органического вещества почв карбоновых полигонов России (обзор) // Почвоведение. 2022. № 7. С. 773–772.
  2. Баева Ю.И., Курганова И.Н., Почикалов А.В., Кудеяров В.Н. Физические свойства и изменение запасов углерода серых лесных почв в ходе постагрогенной эволюции (юг Московской области) // Почвоведение. 2017. № 3. С. 345–353.
  3. Браславская Т.Ю. Леса и лесопользование на территории Звенигородской биостанции МГУ: XIX век // Russ. J. Ecosystem Ecology. 2020. V. 5. https://doi.org/10.21685/2500-0578-2020-2-2
  4. Когут Б.М., Милановский Е.Ю., Хаматнуров Ш.А. О методах определения содержания органического углерода в почвах (критический обзор) // Бюл. Почв. ин-а им. В.В. Докучаева. 2023. Т. 114. С. 5–28. https://doi.org/10.19047/0136-1694-2023-114-5-28
  5. Когут Б.М., Семенов В.М. Оценка насыщенности почвы органическим углеродом // // Бюл. Почв. ин-а им. В.В. Докучаева. 2020. Вып. 102. С. 103–124.
  6. Копцик Г.Н., Копцик С.В., Ливанцова С.Ю. Мониторинг почв лесных биогеоценозов Звенигородской биостанции // Тр. Звенигородской биологической станции. Т. 4. М.: Изд-во Моск. ун-та, 2005. С. 29–44.
  7. Копцик Г.Н., Смирнова И.Е., Копцик С.В. Анализ эколого-генетических особенностей почв для мониторинга лесных экосистем в зоне хвойно-широколиственных лесов // Почвоведение. 2023. № 10. С. 1269–1284.
  8. Копцик Г.Н., Смирнова И.Е., С.Ю. Ливанцова, Копцик С.В., Захарова А.И., Вострецова Е.В. Вклад растительного опада и подстилки в биологический круговорот элементов в лесных экосистемах Звенигородской биостанции // Тр. Звенигородской биологической станции. Т. 5. М.: Изд-во Московского университета, 2011. С. 18–32.
  9. Копцик С.В., Копцик Г.Н., Ливанцова С.Ю., Березина Н.А., Вахрамеева М.Г. Анализ взаимосвязи почв и растительности в лесных биогеоценозах методом главных компонент // Экология. 2003. № 1. С. 37–45.
  10. Коротков В.Н. Лесные климатические проекты в России: ограничения и возможности // Rus. J. Ecosystem Ecology. 2022. V. 7(4). https://doi.org/10.21685/2500-0578-2022-4-3
  11. Кузнецова А.И., Лукина Н.В., Тихонова Е. В., Горнов А.В., Горнова М.В., Смирнов В.Э., Гераськина А.П., Шевченко Н.Е., Тебенькова Д.Н., Чумаченко С.И. Аккумуляция углерода в песчаных и суглинистых почвах равнинных хвойно-широколиственных лесов в ходе послерубочных восстановительных сукцессий // Почвоведение. 2019. № 7. С. 803–816.
  12. Лукина Н.В., Кузнецова А.И., Гераськина А.П., Смирнов В.Э., Иванова В.Н., Тебенькова Д.Н., Горнов А.В., Шевченко Н.Е., Тихонова Е.В. Неучтенные факторы, определяющие запасы углерода в лесных почвах // Метеорология и гидрология. 2022. № 10. С. 92–110. https://doi.org/10.52002/0130-2906-2022-10-92-110
  13. Наумова Н.Б. К вопросу об определении содержания органического углерода в почве // Почвы и окружающая среда. 2018. № 1(2). С. 98–103. https://doi.org/10.31251/pos.v1i2.13
  14. Никитин Д.А., Семенов М.В., Чернов Т.И., Ксенофонтова Н.А., Железова А.Д., Иванова Е.А., Хитров Н.Б., Степанов А.Л. “Микробиологические индикаторы экологических функций почв (обзор)” // Почвоведение. 2022. № 2. С. 228–243.
  15. Подзолистые почвы запада европейской части СССР. М., 1977. 286 с.
  16. Семенов В.М., Когут Б.М. Почвенное органическое вещество. М.: ГЕОС, 2015. 233 с.
  17. Семенов В.М., Лебедева Т.Н., Лопес де Гереню В.О., Овсепян Л.А., Семенов М.В., Курганова И.Н. Пулы и фракции органического углерода в почве: структура, функции и методы определения // Почвы и окружающая среда. 2023. Т. 6. № 1. e199. https://doi.org/10.31251/pos.v6i1.199
  18. Стольникова Е.В., Ананьева Н.Д., Чернова О.В. Микробная биомасса, ее активность и структура в почвах старовозрастных лесов Европейской территории России // Почвоведение. 2011. № 4. С. 479–494.
  19. Чернова О.В., Голозубов О.М., Алябина И.О., Щепащенко Д.Г. Комплексный подход к картографической оценке запасов органического углерода в почвах России // Почвоведение. 2021. № 3. С. 273–286.
  20. Честных О.В., Грабовский В.И., Замолодчиков Д.Г. Углерод почв лесных районов Европейско-Уральской части России // Вопросы лесной науки. 2020. Т 3. № 2. С. 1–5. https://doi.org/10.31509/2658-607x-2020-3-2-1-15
  21. Честных О.В., Замолодчиков Д.Г. Зависимость плотности почвенных горизонтов от глубины их залегания и содержания гумуса // Почвоведение. 2004. № 8. С. 937–944.
  22. Честных О.В., Замолодчиков Д.Г., Уткин А.И. Общие запасы биологического углерода и азота в почвах лесного фонда России // Лесоведение. 2004. № 4. С. 30–42.
  23. Честных О.В., Лыжин В.А., Кокшарова А.В. Запасы углерода в подстилках лесов России // Лесоведение. 2007. № 6. С. 114–121.
  24. Шамрикова Е.В., Ванчикова Е.В., Кондратенок Б.М., Лаптева Е.М., Кострова С.Н. Проблемы и ограничения дихроматометрического метода измерения содержания почвенного органического вещества (обзор) // Почвоведение. 2022. № 7. С. 787–794.
  25. Щепащенко Д.Г., Мухортова Л.В., Швиденко А.З., Ведрова Э.Ф. Запасы органического углерода в почвах России // Почвоведение. 2013. № 2. С. 123–123.
  26. Anderson J.P.E., Domsch K.H. Quantity of plant nutrients in the microbial biomass of selected soils // Soil Science. 1980. V. 130. № 4. P. 211–216.
  27. Angst G., Mueller K.E., Nierop K.G., Simpson M.J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter // Soil Biol. Biochem. 2021. V. 156(1–3). P. 108–189. https://doi.org/10.1016/j.soilbio.2021.108189
  28. Baritz R., Seufert G., Montanarella L., Van Ranst E. Carbon concentrations and stocks in forest soils of Europe // Forest Ecology and Management. 2010. V. 260. P. 262–277.
  29. Baveye P., Berthelin J., Tessier D., Lemaire G. The “4 per 1000” initiative: A credibility issue for the soil science community? // Geoderma. 2018. V. 309. P. 118–123. https://doi.org/10.1016/j.geoderma.2017.05.005
  30. Bolan N.S., Adriano D.C., Kunhikrishnan A., James T., McDowell R., Senesi N. Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils // Adv. Agron. 2011. V. 110. P. 1–75. https://doi.org/10.1016/B978-0-12-385531-2.00001-3
  31. Corti G., Ugolini F., Agnelli A., Certini G. et al. The soil skeleton, a forgotten pool of carbon and nitrogen in soil // Eur. J. Soil Sci. 2002. V. 53(2). P. 283–298. https://doi.org/10.1046/j.1365-2389.2002.00442.x
  32. Cotrufo M.F., Ranalli M.G., Haddix M.L. et al. Soil carbon storage informed by particulate and mineral-associated organic matter // Nat. Geosci. 2019. https://doi.org/10.1038/s41561-019-0484-6
  33. De Vos B., Cools N., Ilvesniemi H., Vesterdal L., Vanguelova E., Carnicelli S. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey // Geoderma. 2015. V. 251–252. P. 33–46. https://doi.org/10.1016/j.geoderma.2015.03.008
  34. De Vos B., Van Meirvenne M., Quataert P., Deckers J., Muys B. Predictive quality of pedotransfer functions for estimating bulk density of forest soils // Soil Sci. Soc. Am. J. 2005. V. 69. P. 500–510. https://doi.org/10.2136/sssaj2005.0500
  35. De Vries W. Soil carbon 4 per mille: a good initiative but let’s manage not only the soil but also the expectations. Comment on Minasny et al. (2017) Geoderma 292: 59–86 // Geoderma. 2018. V. 309(1). P. 111–112. https://doi.org/10.1016/j.geoderma.2017.05.023
  36. Doetterl S., Stevens A., Six J. et al. Soil carbon storage controlled by interactions between geochemistry and climate // Nat. Geosci. 2015. V. 8. P. 780–783. https://doi.org/10.1038/ngeo2516
  37. Dynarski K.A., Bossio D.F., Scow K.M. Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration // Front. Environ. Sci. 2020. V. 8: 514701. https://doi.org/10.3389/fenvs.2020.514701
  38. FAO. 2020. Global Forest Resources Assessment 2020: Main report. Rome. https://doi.org/10.4060/ca9825en
  39. Gao D., Bai E., Wang S. et al. Three- dimensional mapping of carbon, nitrogen, and phosphorus in soil microbial biomass and their stoichiometry at the global scale // Glob Change Biol. 2022. V. 22. P. 6728–6740. https://doi.org/10.1111/gcb.16374
  40. Georgiou G., Jackson R.B., Vindušková O. et al. Global stocks and capacity of mineral-associated soil organic carbon // Nat. Commun. 2022. V. 13. 3797. https://doi.org/10.1038/s41467-022-31540-9
  41. Harrison R.B., Footen P.W., Strahm B.D. Deep Soil Horizons: Contribution and Importance to Soil Carbon Pools and in Assessing Whole-Ecosystem Response to Management and Global Change // For. Sci. 2011. V. 57(1). P. 67–76.
  42. Hartley I.P., Hill T.C., Chadburn C.E., Hugelius G. Temperature effects on carbon storage are controlled by soil stabilisation capacities // Nat. Commun. 2021. V. 12: 6713. https://doi.org/10.1038/s41467-021-27101-1
  43. Hoffland E., Kuyper T.W., Comans R.N.J. et al. Eco-functionality of organic matter in soils // Plant Soil. 2020. V. 455. P. 1–22. https://doi.org/10.1007/s11104-020-04651-9
  44. Honeysett J.L., Ratkowsky D.A. The use of ignition loss to estimate bulk density of forest soils // J. Soil Sci. 1989. V. 40. P. 299–308.
  45. Jackson R.B., Lajtha K., Crow S.E., Hugelius G., Kramer M.G., Piñeiro G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls // Annu. Rev. Ecol. Evol. Syst. 2017. V. 48. P. 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234
  46. Jandl R., Rodeghiero M., Martinez C., Cotrufo M.F., Bampa F., van Wesemael B., Harrison R.B., Guerrini I.A., deB Richter D., Jr., Rustad L., Lorenz K., Chabbi A., Miglietta F. Current status, uncertainty and future needs in soil organic carbon monitoring // Sci. Total Environ. 2014. V. 468–469. P. 376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026
  47. Jobbágy E.G., Jackson R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation // Ecol Appl. 2000. V. 10(2). P. 423–436. https://doi.org/10.2307/2641104
  48. Juhos K., Madarász B., Kotroczó Z. et al. Carbon sequestration of forest soils is reflected by changes in physicochemical soil indicators – A comprehensive discussion of a long-term experiment on a detritus manipulation // Geoderma. 2021. V. 385(1). 114918. https://doi.org/10.1016/j.geoderma.2020.114918
  49. Kaiser M., Ellerbrock R.H., Wulf M., Dultz S. Hierath C., Sommer M. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use // J. Geophys. Res. Biogeosci. 2012. V. 117. G02018. https://doi.org/10.1029/2011JG001712
  50. Kalbitz K., Kaiser K. Contribution of dissolved organic matter to carbon storage in forest mineral soils // J. Plant Nutr. Soil Sci. 2008. V. 171. P. 52–60. https://doi.org/10.1002/jpln.200700043
  51. Kalbitz K., Solinger S., Park J.-H., Michalzik B., Matzner E. Controls on the dynamics of dissolved organic matter in soils: A review // Soil Sci. 2000. V. 165. P. 277–304. https://doi.org/10.1097/00010694-200004000-00001
  52. Kögel-Knabner I., Guggenberger G., Kleber M., Kandeler E., Kalbitz K., Scheu S., Eusterhues K., Leinweber P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry // J. Plant Nutr. Soil Sci. 2008. V. 171. P. 61–82.https://doi.org/10.1002/jpln.20070004861
  53. Kögel-Knabner I., Rumpel C. Advances in Molecular Approaches for Understanding Soil Organic Matter Composition, Origin, and Turnover: A historical overview // Adv. Agron. 2018. V. 149. P. 1–48. https://doi.org/10.1016/bs.agron.2018.01.003
  54. Lal R. Forest soils and carbon sequestration // For. Ecol. Manag. 2005. V. 220. P. 242–258. https://doi.org/10.1016/j.foreco.2005.08.015
  55. Lal R., Negassa W., Lorenz K. Carbon sequestration in soil // COSUST. 2015. V. 15. P. 79–86. https://doi.org/10.1016/j.cosust.2015.09.002
  56. Lavallee J.M., Soong J.L., Cotrufo M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century // Glob Change Biol. 2020. V. 26. P. 261–273. https://doi.org/10.1111/gcb.14859
  57. Lefebvre D., Williams A.G., Kirk G.J.D. et al. Assessing the carbon capture potential of a reforestation project // Sci. Rep. 2021. V. 11. 19907. https://doi.org/10.1038/s41598-021-99395-6
  58. Liang C., Amelung W., Lehmann J., Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter // Glob Change Biol. 2019. V. 25. P. 3578–3590. https://doi.org/10.1111/gcb.14781
  59. Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. Part IIIa. Sampling and Analysis of Soil. UN-ECE, CLRTAP, 2006. 26 p.
  60. Marschner B., Kalbitz K. Controls of bioavailability and biodegradability of dissolved organic matter in soils // Geoderma. 2003. V. 113. P. 211–235. https://doi.org/10.1016/S0016-7061(02)00362-2
  61. Michalzik B., Kalbitz K., Park J.H., Solinger S., Matzner E. Fluxes and concentrations of dissolved organic carbon and nitrogen–a synthesis for temperate forests // Biogeochemistry. 2001. V. 52. P. 173–205. https://doi.org/10.1023/A:1006441620810
  62. Moinet G.Y.K., Hijbeek R., Vuuren D.P., Giller K.E. Carbon for soils, not soils for carbon // Glob Change Biol. 2023. V. 29(9). P. 2384–2398. https://doi.org/10.1111/gcb.16570
  63. Mukhortova L., Schepaschenko D., Shvidenko A., McCallum I., Kraxner F. Agric. For. Meteorol. 2015. V. 200. P. 97–108. https://doi.org/10.1016/j.agrformet.2014.09.017
  64. Ni X., Liao S., Tan S. et al. The vertical distribution and control of microbial necromass carbon in forest soils // Global Ecol Biogeogr. 2020. V. 29(10). P. 1829–1839. https://doi.org/10.1111/geb.13159
  65. Pan Y., Birdsey R.A., Fang J. et al. A Large and Persistent Carbon Sink in the World’s Forests // Science. 2011. V. 333. P. 988–993. https://doi.org/10.1126/science.1201609
  66. Poulton P., Johnston J., Macdonald A. et al. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom // Glob Change Biol. 2018. V. 24. P. 2563–2584. https://doi.org/10.1111/gcb.14066
  67. Rasmussen C., Heckman K., Wieder W.R., Keiluweit M., Lawrence C.R., Berhe A.A., Blankinship J.C., Crow S.E., Druhan J.L., Hicks Pries C.E., Marin-Spiotta E., Plante A.F., Schädel C., Schimel J.P., Sierra C.A., Thompson A., Wagai R. Beyond clay: towards an improved set of variables for predicting soil organic matter content // Biogeochemistry. 2018. V. 137. P. 297–306. https://doi.org/10.1007/s10533-018-0424-3
  68. Roth V.-N., Lange M., Simon C., Hertkorn N., Bucher S., Goodall T. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil // Nat. Geosci. 2019. V. 12. P. 755–761. https://doi.org/10.1038/s41561-019-0417-4
  69. Rumpel C., Kögel-Knabner I. Deep soil organic matter–a key but poorly understood component of terrestrial C cycle // Plant Soil. 2011. V. 338. P. 143–158. https://doi.org/10.1007/s11104-010-0391-5
  70. Schmidt M., Torn M., Abiven S. et al. Persistence of soil organic matter as an ecosystem property // Nature. 2011. V. 478. P. 49–56. https://doi.org/10.1038/nature10386
  71. Schrumpf M., Schulze E., Kaiser K., Schumacher J. How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? // Biogeosci. Discuss. 2011. V. 8. P. 723–769. https://doi.org/10.5194/bgd-8-723-2011
  72. Schulze K., Borken W., Matzner E. Dynamics of dissolved organic C-14 in throughfall and soil solution of a Norway spruce forest // Biogeochemistry. 2011. V. 106(3). P. 461–473. https://doi.org/10.1007/s10533-010-9526-2
  73. Shao P., Han H., Sun J., Xie H. Effects of global change and human disturbance on soil carbon cycling in boreal forest: A review // Pedosphere. 2023. V. 33(1). P. 194–211. https://doi.org/10.1016/j.pedsph.2022.06.035
  74. Six J., Conant R.T., Paul E.A., Paustian K. Stabilization mechanisms of soil organic matter: Implications for C‑saturation of soils // Plant Soil. 2002. V. 241. P. 155–176. https://doi.org/10.1023/A:1016125726789
  75. Solly E.F., Weber V., Zimmermann S., Walthert L., Hagedorn F., Schmidt M.W.I. A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils // Front. For. Glob. Change. 2020. V. 3. 98. https://doi.org/10.3389/ffgc.2020.00098
  76. ter Braak C.J.F. Ordination // Data analysis in community and landscape ecology. Cambridge University Press, 1995. P. 91–274.
  77. The international “4 per 1000” Initiative [Электронный ресурс]. – https://4p1000.org (дата обращения 18.06.2023).
  78. Van Groenigen J.W., Van Kessel C., Hungate B.A., Oenema O., Powlson D.S., Van Groenigen K.J. Sequestering soil organic carbon: a nitrogen dilemma // Environ. Sci. Technol. 2017. V. 51. P. 4738–4739. https://doi.org/10.1021/acs.est.7b01427
  79. van Hees P.A.W., Jones D.L., Finlay R., Godbold D.L., Lundström U.S. The carbon we do not see–the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review // Soil Biol. Biochem. 2005. V. 37. P. 1–13. https://doi.org/10.1016/j.soilbio.2004.06.010
  80. Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C // Soil Biol. Biochem. 1987. V. 19. № 6. P. 703–707.
  81. Vogel H.-J., Eberhardt E., Franko U., Lang B., Ließ M., Weller U., Wiesmeier M., Wollschläger U. Quantitative Evaluation of Soil Functions: Potential and State // Front. Environ. Sci. 2019. V. 7. P. 164. https://doi.org/10.3389/fenvs.2019.00164
  82. Wiesmeier M., Urbanski L., Hobley E. et al. Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales // Geoderma. 2019. V. 333. P. 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026
  83. Xu X., Thornton P.E., Post W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems // Glob. Ecol. Biogeogr. 2013. V. 22(6). P. 737–749. https://doi.org/10.1111/geb.12029

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (67KB)
3.

Download (53KB)
4.

Download (82KB)
5.

Download (75KB)
6.

Download (143KB)

Copyright (c) 2023 Г.Н. Копцик, С.В. Копцик, Ю.В. Куприянова, М.С. Кадулин, И.Е. Смирнова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies