Estimation of Heterotrophic Soil Respiration Response to the Summer Precipitation Regime and Different Depths of Snow Cover in a Temperate Continental Climate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Regime of precipitation and temperature conditions are key factors that regulate the rate of decomposition of soil organic matter in terrestrial ecosystems. The aim of this work was to assess the effect of the duration of dry periods in summer and different depths of snow cover in winter on heterotrophic soil respiration. The studies were carried out as part of a 2–year field manipulation experiment organized on gray soil (Haplic Luvisol) in the temperate continental climate conditions (southern Moscow region). Three variants were organized: (1) simulation of mild weather with uniform watering of the soil in summer and the absence of freezing in winter, (2) simulating two summer dry periods lasting 1–2 months with natural winter snow cover, (3) simulation of extreme weather with one long (~3 months) dry period in summer and complete removal of snow cover in winter. Heterotrophic soil respiration was measured by the closed chamber method on bare fallow during 2 years of continuous experiment and 1 more year after its completion. Medians of heterotrophic soil respiration for the entire period of the experiment in the three above–mentioned variants of the experiment were 38, 27 and 19 mg C/(m2 h), respectively. Two short dry periods led to an increase in heterotrophic soil respiration by 7–10%, which is associated both with the drying and rewetting cycles of the soil and with an increase in the average summer temperature of a 20–cm soil profile by 1.5°C. The prolonged dry period caused a decrease in heterotrophic soil respiration by 12–16% as a result of low soil moisture. Soil freezing led to a strong decrease in winter CO2 emission from soil, which reached 34–55% in the control variant and 57–72% when the snow cover was removed. The frost period (November–March) contributed from 25–34% without of soil freezing to 14–19% when its presence to the annual CO2 flux. We conclude that the change in the winter temperature regime of the soil due to manipulations with the snow depth led to a more significant change in the annual heterotrophic soil respiration than the lack of precipitations in the summer season.

About the authors

D. A. Khoroshaev

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences

Author for correspondence.
Email: d.khoroshaev@pbcras.ru
Russia, 142290, Pushchino

I. N. Kurganova

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences; University of Tyumen

Email: d.khoroshaev@pbcras.ru
Russia, 142290, Pushchino; Russia, 625003, Tyumen

V. О. Lopes de Gerenyu

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences

Email: d.khoroshaev@pbcras.ru
Russia, 142290, Pushchino

References

  1. Веселов В.М., Прибыльская И.Р., Мирзеабасов О.А. Специализированные массивы для климатических исследований. Обнинск: ВНИИГМИ-МЦД, 2022
  2. Гончарова О.Ю., Семенюк О.В., Матышак Г.В., Бобрик А.А. Сезонная динамика продукции CO2 почвами дендрария ботанического сада МГУ им. М.В. Ломоносова // Вестник Моск. ун-та. 2016. № 2. С. 3–10
  3. Золина О.Г., Булыгина О.Н. Современная Климатическая Изменчивость Характеристик Экстремальных Осадков В России // Фундаментальная и прикладная климатология. 2016. Т. 1. С. 84–103.
  4. Карелин Д.В., Горячкин С.В., Кудиков А.В., Лопес де Гереню В.О., Лунин В.Н., Долгих А.В., Люри Д.И. Изменение запасов углерода и эмиссии CO2 в ходе постагрогенной сукцессии растительности на серых почвах в европейской части России // Почвоведение. 2017. № 5. С. 580–594. https://doi.org/10.7868/S0032180X17050070
  5. Карелин Д.В., Замолодчиков Д.Г., Исаев А.С. Малоизвестные импульсные составляющие почвенной эмиссии диоксида углерода в таежных лесах // Доклады Академии наук. 2017. Т. 475. № 4. С. 473–476. https://doi.org/10.7868/s0869565217220248
  6. Коршунова Н.Н., Булыгина О.Н., Разуваев В.Н., Давлетшин С.Г. Оценки экстремальности температурного режима и режима осадков для территории РФ и ее регионов // Тр. Всерос. НИИ гидрометеорологической информации – мирового центра данных. 2018. № 183. С. 20–30
  7. Коршунова Н.Н., Давлетшин С.Г. Климатические характеристики оттепелей на территории России // Тр. Всерос. НИИ гидрометеорологической информации – мирового центра данных. 2019. № 184. С. 24–32
  8. Курганова И.Н., Лопес де Гереню В.О., Хорошаев Д.А., Мякшина Т.Н., Сапронов Д.В., Жмурин В.А., Кудеяров В.Н. Анализ многолетней динамики дыхания почв в лесном и луговом ценозах Приокско–террасного биосферного заповедника в свете современных климатических трендов // Почвоведение. 2020. № 10. С. 1220–1236. https://doi.org/10.31857/S0032180X20100111
  9. Курганова И.Н., Типе Р. Влияние процессов промерзания–оттаивания на дыхательную активность почв // Почвоведение. 2003. № 9. С. 1095–1105.
  10. Курганова И.Н., Лопес де Гереню В.О., Аблеева В.А., Быховец С.С. Климат южного Подмосковья: современные тренды и оценка аномальности // Фундаментальная и прикладная климатология. 2017. Т. 4. С. 66–82.
  11. Ларионова А.А., Евдокимов И.В., Курганова И.Н., Сапронов Д.В., Кузнецова Л.Г., Лопес де Гереню В.О. Дыхание корней и его вклад в эмиссию СО2 из почвы // Почвоведение. 2003. № 2. С. 183–194
  12. Лопес де Гереню В.О., Курганова И.Н., Замолодчиков Д.Г., Кудеяров В.Н. Методы количественной оценки потоков диоксида углерода из почв // Методы исследований органического вещества почв. М., 2005. С. 408–425
  13. Мирвис В.М., Гусева И.П. Изменения в режиме оттепелей на территории России // Тр. главной геофизической обсерватории им. А.И. Войтехова. 2007. № 556. С. 101–115
  14. Росгидромет. Доклад об особенностях климата на территории Российской Федерации за 2021 год. М., 2022. 104 с.
  15. Росгидромет. Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации / Под ред. Катцова В.М. СПБ.: Наукоемкие технологии, 2022. 676 с.
  16. Сосновский А.В., Осокин Н.И. Влияние оттепелей на снежный покров и промерзание грунта при современных изменениях климата // Лед и снег. 2019. Т. 59. № 4. С. 475–482. https://doi.org/10.15356/2076-6734-2019-4-433
  17. Хайруллин Х.Ш. Оттепели на территории СССР. Л.: Гидрометеоиздат, 1969. 87 с.
  18. Хорошаев Д.А. Влияние экстремальных погодных явлений на потоки CO2 из почв под луговой растительностью и чистым паром в имитационном эксперименте. Дис. … канд. биол. наук. М., 2021. 200 с.
  19. Akinremi O.O., McGinn S.M., McLean H.D.J. Effects of soil temperature and moisture on soil respiration in barley and fallow plots // Can. J. Soil Sci. 1999. V. 79. P. 5–13.
  20. Barnard R.L., Blazewicz S.J., Firestone M.K. Rewetting of soil: revisiting the origin of soil CO2 emissions // Soil Biol. Biochem. 2020. V. 147. P. 107819. https://doi.org/10.1016/j.soilbio.2020.107819
  21. Birch H.F. The effect of soil drying on humus decomposition and nitrogen availability // Plant Soil. 1958. V. 10. P. 9–31. https://doi.org/10.1007/BF01343734
  22. Bond–Lamberty B., Bailey V.L., Chen M., Gough C.M., Vargas R. Globally rising soil heterotrophic respiration over recent decades // Nature. Nature Publishing Group. 2018. V. 560. P. 80–83.
  23. Borken W., Savage K., Davidson E.A., Trumbore S.E. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil // Glob. Change Biol. 2006. V. 12. P. 177–193.
  24. Brooks P.D., Grogan P., Templer P.H., Groffman P., Öquist M.G., Schimel J. Carbon and Nitrogen Cycling in Snow–Covered Environments // Geogr. Compass. 2011. V. 5. P. 682–699. https://doi.org/10.1111/j.1749-8198.2011.00420.x
  25. Brooks P.D., McKnight D., Elder K. Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes // Glob. Change Biol. 2005. V. 11. P. 231–238. https://doi.org/10.1111/j.1365-2486.2004.00877.x
  26. Campbell J.L., Ollinger S.V., Flerchinger G.N., Wicklein H., Hayhoe K., Bailey A.S. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA // Hydrol. Process. 2010. V. 24. P. 2465–2480. https://doi.org/10.1002/hyp.7666
  27. Chantigny M.H., Rochette P., Angers D.A., Goyer C., Brin L.D., Bertrand N. Nongrowing season N2O and CO2 emissions – Temporal dynamics and influence of soil texture and fall–applied manure // Can. J. Soil Sci. NRC Research Press, 2017. V. 97. P. 452–464. https://doi.org/10.1139/cjss-2016-0110
  28. Chernokulsky A., Kozlov F., Zolina O., Bulygina O., Mokhov I.I., Semenov V.A. Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades // Environ. Res. Lett. IOP Publishing, 2019. V. 14. P. 045001. https://doi.org/10.1088/1748-9326/aafb82
  29. Chimner R.A., Welker J.M., Morgan J., LeCain D., Reeder J. Experimental manipulations of winter snow and summer rain influence ecosystem carbon cycling in a mixed–grass prairie, Wyoming, USA // Ecohydrology. 2010. V. 3. P. 284–293. https://doi.org/10.1002/eco.106
  30. Chin M.–Y., Lau S.Y.L., Midot F., Jee M.S., Lo M.L., Sangok F., Melling L. Root exclusion method for separating soil respiration components: Review and methodological considerations // Pedosphere. 2023. https://doi.org/10.1016/j.pedsph.2023.01.015
  31. De Frenne P., Zellweger F., Rodríguez–Sánchez F., Scheffers B.R., Hylander K., Luoto M., Vellend M., Verheyen K., Lenoir J. Global buffering of temperatures under forest canopies // Nat. Ecol. Evol. 2019. V. 3. P. 744–749. https://doi.org/10.1038/s41559-019-0842-1
  32. Du E., Zhou Z., Li P., Jiang L., Hu X., Fang J. Winter soil respiration during soil–freezing process in a boreal forest in Northeast China // J. Plant Ecol. 2013. V. 6. P. 349–357. https://doi.org/10.1093/jpe/rtt012
  33. Falloon P., Jones C.D., Ades M., Paul K. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty // Glob. Biogeochem. Cycles. 2011. V. 25. https://doi.org/10.1029/2010GB003938
  34. Halim M.A., Thomas S.C. A proxy–year analysis shows reduced soil temperatures with climate warming in boreal forest // Sci. Rep. 2018. V. 8. P. 16859.
  35. Hanson P.J., Edwards N.T., Garten C.T., Andrews J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations // Biogeochemistry. 2000. V. 48. P. 115–146. https://doi.org/10.1023/a:1006244819642
  36. Hardy J.P., Groffman P.M., Fitzhugh R.D., Henry K.S., Welman A.T., Demers J.D., Fahey T.J., Driscoll C.T., Tierney G.L., Nolan S. Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest // Biogeochemistry. 2001. V. 56. P. 151–174. https://doi.org/10.1023/a:1013036803050
  37. Harrison J.L., Sanders-DeMott R., Reinmann A.B., Sorensen P.O., Phillips N.G., Templer P.H. Growing–season warming and winter soil freeze/thaw cycles increase transpiration in a northern hardwood forest // Ecology. 2020. V. 101. P. e03173. https://doi.org/10.1002/ecy.3173
  38. Henry H.A.L. Climate change and soil freezing dynamics: historical trends and projected changes // Clim. Change. 2008. V. 87. P. 421–434. https://doi.org/10.1007/s10584-007-9322-8
  39. Hoover D.L., Knapp A.K., Smith M.D. The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland: Soil Respiration and Climate Extremes // J. Geophys. Res. Biogeosciences. 2016. V. 121. P. 1034–1044. https://doi.org/10.1002/2015jg003256
  40. IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021. 3949 p.
  41. Jarvis P., Rey A., Petsikos C., Wingate L., Rayment M., Pereira J., Banza J., David J., Miglietta F., Borghetti M., Manca G., Valentini R. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect” // Tree Physiol. Oxford Academic, 2007. V. 27. P. 929–940. https://doi.org/10.1093/treephys/27.7.929
  42. Kim D.G., Vargas R., Bond-Lamberty B., Turetsky M.R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research // Biogeosciences. 2012. V. 9. P. 2459–2483. https://doi.org/10.5194/bg-9-2459-2012
  43. Knorr W., Prentice I.C., House J.I., Holland E.A. Long–term sensitivity of soil carbon turnover to warming // Nature. 2005. V. 433. P. 298–301. https://doi.org/10.1038/nature03226
  44. Kreyling J. The Ecological Importance of Winter in Temperate, Boreal, and Arctic Ecosystems in Times of Climate Change // Progress in Botany Vol. 81 / Ed. Cánovas F.M. et al. Cham: Springer International Publishing, 2020. P. 377–399. https://doi.org/10.1007/124_2019_35
  45. Kreyling J., Henry H. Vanishing winters in Germany: soil frost dynamics and snow cover trends, and ecological implications // Clim. Res. 2011. V. 46. P. 269–276. https://doi.org/10.3354/cr00996
  46. Kudeyarov V.N., Kurganova I.N. Respiration of Russian Soils: Database Analysis, Long–Term Monitoring, and General Estimates // Eurasian Soil Sci. 2005. V. 38. P. 983–992
  47. Kurganova I., Lopes de Gerenyu V., Khoroshaev D., Blagodatskaya E. Effect of snowpack pattern on cold–season CO2 efflux from soils under temperate continental climate // Geoderma. 2017. V. 304. P. 28–39. https://doi.org/10.1016/j.geoderma.2016.09.009
  48. Kurganova I.N., Lopes de Gerenu V.O., Myakshina T.N., Sapronov D.V., Khoroshaev D.A., Zhmurin V.A. The Temporal Variability of Respiration of a Soddy–Podzolic Soil in Forest and Meadow Coenoses of the South–Taiga Zone // Mosc. Univ. Soil Sci. Bulleti. 2022. V. 77. P. 74–82. https://doi.org/10.3103/S0147687422020041
  49. Kurganova I.N., Lopes de Gerenu V.O., Khoroshaev D.A., Myakshina T.N., Sapronov D.V., Zhmurin V.A., Kudeyarov V.N. Analysis of the long–term soil respiration dynamics in the forest and meadow cenoses of the Prioksko–terrasny biosphere reserve in the perspective of current climate trends // Eurasian Soil Sci. 2020. V. 53. P. 1421–1436. https://doi.org/10.1134/s1064229320100117
  50. Kurganova I.N., Kudeyarov V.N., Lopes de Gerenyu V.O. Updated estimate of carbon balance on Russian territory // Tellus B Chem. Phys. Meteorol. 2010. V. 62. P. 497–505. https://doi.org/10.1111/j.1600-0889.2010.00467.x
  51. Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods // Soil Biol. Biochem. 2006. V. 38. P. 425–448. https://doi.org/10.1016/j.soilbio.2005.08.020
  52. Kuzyakov Y., Larionova A.A. Root and rhizomicrobial respiration: A review of approaches to estimate respiration by autotrophic and heterotrophic organisms in soil // J. Plant Nutr. Soil Sci. 2005. V. 168. P. 503–520. https://doi.org/10.1002/jpln.200421703
  53. Lange S.F., Allaire S.E., Cuellar Castillo M.A., Dutilleul P. N2O and CO2 dynamics in a pasture soil across the frozen period // Can. J. Soil Sci. 2017. V. 97. P. 497–511. https://doi.org/10.1139/cjss-2016-0054
  54. Lehnert M. Factors affecting soil temperature as limits of spatial interpretation and simulation of soil temperature // Acta Univ. Palacki. Olomuc. Geogr. 2014. V. 45. P. 5–21
  55. Leuzinger S., Fatichi S., Cusens J., Körner C., Niklaus P. The “sland effect” in terrestrial global change experiments: a problem with no solution? // AoB PLANTS. 2015. V. 7. https://doi.org/10.1093/aobpla/plv092
  56. Li J.-T., Wang J.-J., Zeng D.-H., Zhao S.-Y., Huang W.-L., Sun X.-K., Hu Y.-L. The influence of drought intensity on soil respiration during and after multiple drying–rewetting cycles // Soil Biol. Biochem. 2018. V. 127. P. 82–89. https://doi.org/10.1016/j.soilbio.2018.09.018
  57. Li W., Wu J., Bai E., Jin C., Wang A., Yuan F., Guan D. Response of terrestrial carbon dynamics to snow cover change: A meta–analysis of experimental manipulation(II) // Soil Biol. Biochem. 2016. V. 103. P. 388–393. https://doi.org/10.1016/j.soilbio.2016.09.017
  58. Liptzin D., Helmig D., Schmidt S.K., Seok B., Williams M.W. Winter gas exchange between the atmosphere and snow–covered soils on Niwot Ridge, Colorado, USA // Plant Ecol. Divers. 2015. V. 8. P. 677–688. https://doi.org/10.1080/17550874.2015.1065925
  59. Liu Y., Li J., Jin Y., Zhang Y., Sha L., Grace J., Song Q., Zhou W., Chen A., Li P., Zhang S. The influence of drought strength on soil respiration in a woody savanna ecosystem, southwest China // Plant Soil. 2018. V. 428. P. 321–333. https://doi.org/10.1007/s11104-018-3678-6
  60. Lopes de Gerenyu V.O., Kurganova I.N., Khoroshaev D.A. The effect of contrasting moistening regimes on CO2 emission from the gray forest soil under a grass vegetation and bare fallow // Eurasian Soil Sci. 2018. V. 51. P. 1200–1213. https://doi.org/10.1134/s1064229318100034
  61. Monson R.K., Lipson D.L., Burns S.P., Turnipseed A.A., Delany A.C., Williams M.W., Schmidt S.K. Winter forest soil respiration controlled by climate and microbial community composition // Nature. 2006. V. 439. P. 711–714. https://doi.org/10.1038/nature04555
  62. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2021
  63. Sanders-DeMott R., Sorensen P.O., Reinmann A.B., Templer P.H. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem // Biogeochemistry. 2018. V. 137. P. 337–349. https://doi.org/10.1007/s10533-018-0422-5
  64. Sanders-DeMott R., Templer P.H. What about winter? Integrating the missing season into climate change experiments in seasonally snow covered ecosystems // Methods Ecol. Evol. 2017. V. 8. P. 1183–1191. https://doi.org/10.1111/2041-210x.12780
  65. Schmidt S.K., Wilson K.L., Monson R.K., Lipson D.A. Exponential growth of “snow molds” at sub–zero temperatures: an explanation for high beneath–snow respiration rates and Q10 values // Biogeochemistry. 2009. V. 95. P. 13–21. https://doi.org/10.1007/s10533-008-9247-y
  66. Schmidt S.K., Lipson D.A. Microbial growth under the snow: Implications for nutrient and allelochemical availability in temperate soils // Plant Soil. 2004. V. 259. P. 1–7. https://doi.org/10.1023/b:plso.0000020933.32473.7e
  67. Song J., Wan S., Piao S., Knapp A.K., Classen A.T., Vicca S., Ciais P. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon–cycling respon es to global change // Nat. Ecol. Evol. 2019. V. 3. P. 1309–1320. https://doi.org/10.1038/s41559-019-0958-3
  68. Templer P.H., Reinmann A.B., Sanders-DeMott R., Sorensen P.O., Juice S.M., Bowles F., Sofen L.E. et al. Climate change across seasons experiment (CCASE): a new method for simulating future climate in seasonally snow-covered ecosystems // PLOS ONE / Ed. Rixen C. 2017. V. 12. P. e0171928. https://doi.org/10.1371/journal.pone.0171928
  69. Venäläinen A., Tuomenvirta H., Heikinheimo M., Kellomäki S., Peltola H., Strandman H., Väisänen H. Impact of climate change on soil frost under snow cover in a forested landscape // Clim. Res. 2001. V. 17. P. 63–72. https://doi.org/10.3354/cr017063
  70. Williams C.M., Henry H.A.L., Sinclair B.J. Cold truths: how winter drives responses of terrestrial organisms to climate change // Biol. Rev. 2015. V. 90. P. 214–235. https://doi.org/10.1111/brv.12105
  71. Wipf S., Rixen C. A review of snow manipulation experiments in Arctic and alpine tundra ecosystems // Polar Res. 2010. V. 29. P. 95–109. https://doi.org/10.1111/j.1751-8369.2010.00153.x
  72. Xu X. Effect of freeze-thaw disturbance on soil C and N dynamics and GHG fluxes of East Asia forests: review and future perspectives // Soil Sci. Plant Nutr. 2022. V. 68. P. 15–26. https://doi.org/10.1080/00380768.2021.2003164
  73. Zhang H., Wang E., Zhou D., Luo Z., Zhang Z. Rising soil temperature in China and its potential ecological impact // Sci. Rep. 2016. V. 6. P. 35530. https://doi.org/10.1038/srep35530
  74. Zhang T. Influence of the seasonal snow cover on the ground thermal regime: An overview // Rev. Geophys. 2005. V. 43. P. RG4002. https://doi.org/10.1029/2004rg000157
  75. Zhou L., Zhou X., Shao J., Nie Y., He Y., Jiang L., Wu Z., Hosseini Bai S. Interactive effects of global change factors on soil respiration and its components: a meta–analysis // Glob. Change Biol. 2016. V. 22. P. 3157–3169. https://doi.org/10.1111/gcb.13253

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (920KB)
3.

Download (315KB)
4.

Download (104KB)
5.

Download (110KB)
6.

Download (313KB)

Copyright (c) 2023 Д.А. Хорошаев, И.Н. Курганова, В.О. Лопес де Гереню

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies