Short-Term Dynamics of CO2 Emission and Carbon Content in Urban Soil Structures in the Steppe Zone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Сonstructed Technosols are an important component of urban green infrastructure whose role in the carbon balance of urban ecosystems remains poorly understood. The dynamics of carbon stocks and CO2 emissions of soil structures depend on both bioclimatic conditions and the parameters of the construction – the substrates used, the composition and thickness of the layers. The carbon stock dynamics and CO2 emission were studied on constructozems of different composition established at the “Experimental Station for Study of Soil Constructs” in the Botanical Garden of the Southern Federal University (Rostov-on-Don). The station consists of 15 self-contained sites, which present 5 different variants of soil constructions created using substrates traditionally used for landscaping and beautification tasks in the cities of the steppe zone. The Haplic Chernozems, located on a placor plot in the vicinity of the Experimental Station, was studied as a background area. Monitoring studies over two seasons (from September 2020 to December 2022) allowed the seasonal dynamics of organic and inorganic carbon content and CO2 emissions to be compared for the different soil design options in comparison with the background. In all constructions created on the basis of humus-accumulative horizons of chernozems, a marked dependence of CO2 emission on air (at p < 0.05 for construction 2 r = 0.76, construction 3 – r = 0.82, construction 4 – r = 0.76, construction 5 – r = 0.49) and soil (at p < 0.05 for construction 2 r = 0.58, construction 3 – r = 0.74, construction 4 – r = 0.75, construction 5 – r = 0.68) and soil (at p < 0.05 for construction 2 r = 0.58, construction 3 – r = 0.74, construction 4 – r = 0.75, construction 5 – r = 0.68) was noted. The biomass stocks of lawn grasses growing on the constructions were determined, and a positive correlation between the CO2 emission and the growth of the above–ground biomass (for construction 2 a moderate correlation (r = 0.48, p < 0.05), for constructions 3 and 4 a marked correlation (r = 0.5, p < 0.05; r = 0.68, p < 0.05), and for construction 5 a high correlation (r = 0.75, p < 0.05) was noted. The dynamics of the stock of various forms of carbon in the first year of operation of the structures were studied. Based on the comparison of carbon fluxes and stocks, it is shown that lawn ecosystems in the early stages of constructozem cannot be considered as net carbon stock sites in the temperate continental climate of Rostov-on-Don.

About the authors

S. N. Gorbov

Southern Federal University, Ivanovsky Academy of Biology and Biotechnology

Email: 2s-t@mail.ru
Russia, 344006, Rostov-on-Don

V. I. Vasenev

Peoples’ Friendship University of Russia; Soil and Landscape Geography Group, Wageningen University

Email: 2s-t@mail.ru
Russia, 117198, Moscow; Netherlands, 6707, Wageningen

E. N. Minaeva

Southern Federal University, Ivanovsky Academy of Biology and Biotechnology

Email: 2s-t@mail.ru
Russia, 344006, Rostov-on-Don

S. S. Tagiverdiev

Southern Federal University, Ivanovsky Academy of Biology and Biotechnology

Author for correspondence.
Email: 2s-t@mail.ru
Russia, 344006, Rostov-on-Don

P. N. Skripnikov

Southern Federal University, Ivanovsky Academy of Biology and Biotechnology

Email: 2s-t@mail.ru
Russia, 344006, Rostov-on-Don

O. S. Bezuglova

Southern Federal University, Ivanovsky Academy of Biology and Biotechnology

Email: 2s-t@mail.ru
Russia, 344006, Rostov-on-Don

References

  1. Агроклиматические ресурсы Ростовской области. Справочник. Л.: Гидрометеоиздат, 1972. 251 с.
  2. Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во МГУ, 1970. 488 с.
  3. Безуглова О.С., Горбов С.Н., Скрипников П.Н. Гумусное состояние почв Ростовской агломерации. Ростов-на-Дону-Таганрог: ЮФУ, 2022. 138 с.
  4. Васенев В.И., Прокофьева Т.В., Макаров О.А. Разработка подхода к оценке запасов почвенного органического углерода мегаполиса и малого населенного пункта // Почвоведение. 2013. № 6. С. 725–736.
  5. Визирская М.М. Функционально-экологическая оценка лесных подзолистых почв в условиях Московского мегаполиса: на примере ЛОД РГАУ-М-СХА им. К.А. Тимирязева. Автореф. дис. … канд. биол. наук. М., 2014. 25 с.
  6. Горбов С.Н. Генезис, классификация, экологическая роль городских почв Юга Европейской части России (на примере ростовской агломерации). Автореф. дис. … канд. биол. наук. М., 2018. 48 с.
  7. Горбов С.Н. Генезис, классификация и экологическая роль городских почв Европейской части Юга России (на примере Ростовской агломерации). Дис. … докт. биол. наук. М., 2018. 488 с.
  8. Горбов С.Н., Безуглова О.С. Почвенный покров Ростовской агломерации. Ростов-на-Дону, 2019. 186 с.
  9. Захаров С.А. Почвы Ростовской области и их агрономическая характеристика. Ростов-на-Дону: Ростиздат, 1946. 123 с.
  10. Иващенко К.В., Ананьева Н.Д., Васенев В.И., Кудеяров В.Н., Валинтини Р. Биомасса и дыхательная активность почвенных микроорганизмов в антропогенно-измененных экосистемах (Московская область) // Почвоведение. 2014. № 9. С. 1077–1088.
  11. Карелин Д.В., Замолодчиков Д.Г., Краев Г.Н. Методическое руководство по анализу эмиссий углерода из почв поселений в тундре. М.: Изд-во ЦЭПЛ РАН, 2015. 64 с.
  12. Классификация и диагностика почв России. Смоленск: Изд-во Ойкумена, 2004. 342 с.
  13. Минеев В.Г. Практикум по агрохимии. М.: Изд-во МГУ, 2001. 689 с.
  14. Приваленко В.В. Геохимическая оценка экологической ситуации в г. Ростове-на-Дону. Ростов-на-Дону, 1993. 167 с.
  15. Прокофьева Т.В., Герасимова М.И., Безуглова О.С., Бахматова К.А., Гольева А.А., Горбов С.Н., Жарикова Е.А., Матинян Н.Н., Наквасина Е.Н., Сивцева Н.Е. Введение почв и почвоподобных образований городских территорий в классификацию почв России // Почвоведение. 2014. № 10. С. 1155–1164.
  16. Семенов В.М., Когут Б.М. Почвенное органическое вещество. М: ГЕОС, 2015. 233 с.
  17. Смагин А.В. Настоящее и будущее самой плодородной почвы // Наука в России. 2013. № 1. С. 23–30.
  18. Шамрикова Е.В., Ванчикова Е.В., Кондратёнок Б.М., Лаптева Е.М., Кострова С.Н. Проблемы и ограничения дихроматометрического метода измерения содержания почвенного органического вещества (обзор) // Почвоведение. 2021. № 7. С. 784–794. https://doi.org/10.31857/S0032180X22070097
  19. Bandaranayake W., Qian Y.L., Parton W.J., Ojima D.J., Follett R.F. Estimation of Soil Organic Carbon Changes in Turfgrass Systems Using the CENTURY Model // Agron. J. 2003. V. 95. P. 558–563.
  20. Blum W.E.H. Functions of soil for society and environment // Rev. Environ. Sci. Biotechnol. 2005. V. 4. P. 75–79.
  21. Burba G. Eddy covariance method for scientific, industrial, agricultural and regulatory applications. Li & Cor Biosciences, 2013. 44 p.
  22. Chapin F.S., Woodwell G.M., Randerson J.T., Rastetter E.B., Lovett G.M., Baldocchi D.D. Reconciling carbon-cycle concepts, terminology and methods // Ecosystems. 2006. V. 9. P. 1041–1050.
  23. Delden van L., Larsen E., Rowlings D., Scheer C., Grace P. Establishing turf grass increases soil greenhouse gas emissions in peri-urban environments // Urban. Ecosyst. 2016. V. 19. P. 749–762.
  24. Dvornikov Y.A., Vasenev V.I., Romzaykina O.N., Grigorieva V.E., Litvinov Y.A., Gorbov S.N., Dolgikh A.V., Korneykova M.V., Gosse D.D. Projecting the urbanization effect on soil organic carbon stocks in polar and steppe areas of European Russia by remote sensing // Geoderma. 2021. V. 399. P. 115039. https://doi.org/10.1016/j.geoderma.2021.115039
  25. FAO Climate-smart agriculture. Sourcebook. 2013. E-ISBN 978-92-5-107721-4
  26. Fekete I., Berki I., Lajtha K., Trumbore S., Francioso O., Gioacchini P., Montecchio D. et al. How will a drier climate change carbon sequestration in soils of the deciduous forests of Central Europe? // Biogeochemistry. 2021. V. 152. P. 13–32. https://doi.org/10.1007/s10533-020-00728-w
  27. Gillman L.N., Bollard B., Leuzinger S. Calling time on the imperial lawn and the imperative for greenhouse gas mitigation // Global Sustainability. 2023. V. 6. № 3. https://doi.org/10.1017/sus.2023.1
  28. Ignatieva M., Eriksson F., Eriksson T., Berg P., Hedblom M. The lawn as a social and cultural phenomenon in Sweden // Urban Forestry Urban Greening. 2017. V. 21. P. 213–223.
  29. Ignatieva M., Hedblom M. An alternative urban green carpet // Science. 2018. V. 362. № 6411. P. 148–149. https://doi.org/10.1126/science.aau6974
  30. IUSS Working Group WRB. 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. International Union of Soil Sciences (IUSS), Vienna, Austria.
  31. Lal R. Agricultural activities and the global carbon cycle // Nutr Cycl Agroecosyst. 2004. V. 70. P. 103–116.
  32. Lefèvre C., Rekik F., Alcantara V., Wiese L. Soil Organic Carbon: The Hidden Potential (UN Food and Agriculture Organization, Rome, 2017).
  33. Lorenz K., Kandeler E. Biochemical characterization of urban soil profiles from Stuttgart, Germany // Soil Biol. Biochem. 2005. V. 37. № 7. P. 1373–1385.
  34. Lorenz K., Lal R. Biogeochemical C and N cycles in urban soils // Environ Int. 2009. V. 35. P. 1–8.
  35. Pickett S.T.A., Cadenasso M.L., Grove J.M., Boone C.G., Groffman P.M., Irwin E., Kaushal S.S., Marshall V., McGrath B.P., Nilon C.H., Pouyat R.V., Szlavecz K., Troy A., Warren P. Urban ecological systems: scientific foundations and a decade of progress // J. Environ. Manag. 2011. V. 92. P. 331–362.
  36. Pouyat R.V., Yesilonis I.D., Golubiewski N.E. A comparison of soil organic carbon stocks between residential turfgrass and native soil // Urban Ecosyst. 2009. V. 12. P. 45–62.
  37. Qian Y.L., Bandaranayake W., Parton W.J., Mecham B., Harivandi M.A., Mosier A.R. Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics: The CENTURY model simulation // J. Environ. Qual. 2003. V. 32. P. 1694–1700.
  38. Raich J.W., Potter C.S., Bhagawati D. Interannual variability in global respiration 1980-94 // Glob. Chang. Biol. 2002. V. 8. P. 800–812.
  39. Robbins P., Birkenholtz T. Turfgrass Revolution: Measuring the Expansion of the American Lawn // Land Use Policy. 2003. V. 20. P. 181–194. https://doi.org/10.1016/S0264-8377(03)00006-1
  40. Roper W.R., Robarge W.P., Osmond D.L., Heitman J.L., Comparing four methods of measuring soil organic matter in North Carolina soils // Soil Sci. Soc. Am. J. 2019. V. 83. P. 466–474.
  41. Rossiter D.G. Classification of urban and industrial soils in the world Reference Base for soil resources // J. Soils Sediments. 2007. V. 7. P. 96–100.
  42. Sarzhanov D.A., Vasenev V.I., Vasenev I.I., Sotnikova Y.L., Ryzhkov O.V., Morin T. Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia // Catena. 2017. V. 158. P. 131–140.
  43. Selhorst A., Lal R. Net Carbon sequestration potential and emissions in home lawn turfgrasses of the United States // Environ. Managem. 2013. V. 51. P. 198–208. https://doi.org/10.1007/s00267-012-9967-6
  44. Shanin V.N., Bykhovets S.S., Chertov O.G., Komarov A.S. The effect of various external factors on dynamics of organic carbon in different types of forest: a simulation-based assessment // Russ. For. Sci. 2018. V. 5. P. 335–346.
  45. Shchepeleva A.S., Vasenev V.I., Mazirov I.M., Vasenev I.I., Prokhorov I.S., Gosse D.D. Changes of soil organic carbon stocks and CO2 emissions at the early stages of urban turf grasses’ development // Urban Ecosystems. 2017. V. 20. P. 309–321.
  46. Sleutel S., De Neve S., Singier B., Hofman G. Quantification of organic carbon in soils: A comparison of methodologies and assessment of the carbon content of organic matter // Comm. Soil Sci. Plant Analysis. 2007. V. 38. № 19–20. P. 2647–2657.
  47. Tagiverdiev S.S., Gorbov S.N., Bezuglova O.S., Skripnikov P.N. The content and distribution of various forms of carbon in urban soils of Southern Russia on the example of Rostov agglomeration // Geoderma Regional. 2020. V. 21. P. e00266.
  48. Thienelt T.S., Anderson D.E. Estimates of energy partitioning, evapotranspiration, and net ecosystem exchange of CO2 for an urban lawn and a tallgrass prairie in the Denver metropolitan area under contrasting conditions // Urban Ecosyst. 2021. V. 24. P. 1201–1220. https://doi.org/10.1007/s11252-021-01108-4
  49. Trammell T.L.E., Pouyat R.V., Carreiro M.M., Yesilonis I. Drivers of soil and tree carbon dynamics in urban residential lawns: a modeling approach // Ecological Appl. 2017. V. 27. https://doi.org/10.1002/eap.1502
  50. Velasco E., Segovia E., Choong A.M.F., Lim B.K.Y., Vargas R. Carbon dioxide dynamics in a residential lawn of a tropical city // J. Environ. Management. 2021. V. 280. P. 111752. https://doi.org/10.1016/j.jenvman.2020.111752
  51. Zomer R.J., Bossio D.A., Sommer R., Verchot L.V. Global sequestration potential of increased organic carbon in cropland soils // Sci. Rep. 2017. V. 7. P. 15554. https://doi.org/10.1038/s41598-017-15794-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3MB)
3.

Download (3MB)
4.

Download (322KB)
5.

Download (281KB)
6.

Download (436KB)

Copyright (c) 2023 С.Н. Горбов, В.И. Васенев, Е.Н. Минаева, С.С. Тагивердиев, П.Н. Скрипников, О.С. Безуглова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies