Assessment of Soil Resistance to Contamination by Platinum Nanoparticles by Biodiagnostic Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Soil contamination with platinum nanoparticles is reproduced at a rapid rate, primarily because of the operation of vehicles with platinum exhaust gas converters. Already present on the territory with a concentration of platinum in the soil of more than 2 mg/kg, which is the maximum background content of 750 times. At the same time, the environmental risks of the adverse impact of platinum nanoparticles on the soil are practically not studied. The purpose of this work is to assess the consequences of different buffering capacities of soils to contamination with platinum nanoparticles in terms of biological parameters. Laboratory studies of soil resistance to pollution with platinum nanoparticles (PtNP) in the South of Russia were carried out, and their genetic properties were compared: Ordinary Chernozem (Haplic Chernozem (Loamic)), Brown Forest Soil (Eutric Cambisol), and Gray Sands (Eutric Arenosol). PtНЧ concentration studies 0.01, 0.1, 1, 10 and 100 mg/kg. Soil stability is assessed by the most sensitive and informative biological indicators of the state. It was found that the low content of PtNP (0.01, 0.1 and 1 mg/kg) in most cases does not lead to following the analysis of the biological state of the soil, and higher concentrations (10 and 100 mg/kg) lead to biological indicators. Soil enzymatic activity under PtНЧ contamination was inhibited to a lesser extent than phytotoxic and microbiological indicators. Common chernozem caused greater penetration to PtNP contamination than brown forest soil and gray sands. The results obtained were used to predict environmental risks in case of pollution of paid soils and to develop maximum allowable concentrations of platinum in soils of different buffering capacity.

About the authors

A. N. Timoshenko

Southern Federal University

Author for correspondence.
Email: aly9215@mail.ru
Russia, 344090, Rostov-on-Don

S. I. Kolesnikov

Southern Federal University

Email: aly9215@mail.ru
Russia, 344090, Rostov-on-Don

V. S. Kabakova

Southern Federal University

Email: aly9215@mail.ru
Russia, 344090, Rostov-on-Don

N. A. Evstegneeva

Southern Federal University

Email: aly9215@mail.ru
Russia, 344090, Rostov-on-Don

T. V. Minnikova

Southern Federal University

Email: aly9215@mail.ru
Russia, 344090, Rostov-on-Don

K. Sh. Kazeev

Southern Federal University

Email: aly9215@mail.ru
Russia, 344090, Rostov-on-Don

T. M. Minkina

Southern Federal University

Email: aly9215@mail.ru
Russia, 344090, Rostov-on-Don

References

  1. Буренина А.А., Воронова А.О., Астафурова Т.П. Морфофизиологические эффекты при воздействии наночастиц платины на проростки пшеницы // Сб. науч. тр. по материалам научной конференции, посвященной 100-летию кафедры физиологии растений и микроорганизмов Пермского гос. национ. исслед. ун-та. 18–19 октября 2017 г. Пермь, 2017. С. 9–11.
  2. Галактионова Л.В., Губайдуллина И.З., Лебедев С.В., Гавриш И.А. Воздействие наночастиц цинка на морфометрические показатели и пигментный аппарат Raphanus sativus L., Lepidium sativum L. и Avena sativa L. // Известия ОГАУ. 2017. № 2. С. 203–205.
  3. Казеев К.Ш., Колесников С.И. Биодиагностика почв: методология и методы исследований. Ростов-на-Дону: Изд-во Южного фед. ун-та, 2012. 260 с.
  4. Колесников С.И., Казеев К.Ш., Вальков В.Ф. Экологические последствия загрязнения почв тяжелыми металлами. Ростов-на-Дону: Изд-во СКНЦ ВШ, 2000. 232 с.
  5. Колесников С.И., Казеев К.Ш., Татосян М.Л., Вальков В.Ф. Влияние загрязнения нефтью и нефтепродуктами на биологическое состояние чернозема обыкновенного // Почвоведение. 2006. № 5. С. 616–620.
  6. Колесников С.И., Тимошенко А.Н., Казеев К.Ш., Акименко Ю.В., Мясникова М.А. Оценка экотоксичности наночастиц меди, никеля и цинка по биологическим показателям чернозема // Почвоведение. 2019. № 8. С. 986–992. https://doi.org/10.1134/S0032180X19080094
  7. Кубракова И.В., Тютюнник О.А., Кощеева И.Я., Садагов А.Ю., Набиуллина С.Н. Миграционное поведение платиновых металлов в природно-техногенных системах // Геохимия. 2017. № 1. С. 68–85. https://doi.org/10.7868/S0016752516120050
  8. Куликова Н.А. Наночастицы серебра в почве: поступление, трансформация, токсичность // Почвоведение. 2021. № 3. С. 304–319. https://doi.org/10.31857/S0032180X21030096
  9. Ладонин Д.В. Элементы платиновой группы в почвах и уличной пыли Юго-Восточного административного округа г. Москвы // Почвоведение. 2018. № 3. С. 274–283. https://doi.org/10.7868/S0032180X18030024
  10. Минкина Т.М., Мотузова Г.В., Назаренко О.Г. Взаимодействие тяжелых металлов с органическим веществом чернозема обыкновенного // Почвоведение. 2006. № 7. С. 804–811.
  11. Плеханова И.О., Золотарева О.А., Тарасенко И.Д., Яковлев А.С. Оценка экотоксичности почв в условиях загрязнения тяжелыми металлами // Почвоведение. 2019. № 10. С. 1243–1258. https://doi.org/10.1134/S0032180X19100083
  12. Терехова В.А., Прудникова Е.В., Кирюшина А.П., Карпухин М.М., Плеханова И.О., Якименко О.С. Фитотоксичность тяжелых металлов в дерново-подзолистых почвах разной степени окультуренности // Почвоведение. 2021. № 6. С. 757–768. https://doi.org/10.31857/S0032180X21060137
  13. Тимошенко А., Колесников С., Вардуни В., Тер-Мисакянц Т., Неведомая Е., Казеев К. Oценка экотоксичности наночастиц меди // Экология и промышленность России. 2021. № 25. P. 61–65. https://doi.org/10.18412/1816-0395-2021-4-61-65
  14. Цепина Н.И., Минникова Т.В., Колесников С.И., Казеев К.Ш. Oценка фитотоксичности серебра на почвах разной устойчивости: бурых лесных, черноземах и серопесках // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки. 2020. № 3. P. 107–112. https://doi.org/10.18522/1026-2237-2020-3-107-112
  15. Чернова О.В., Безуглова О.С. Опыт использования данных фоновых концентраций тяжелых металлов при региональном мониторинге загрязнения почв // Почвоведение. 2019. № 8. С. 1015–1026. https://doi.org/10.1134/S0032180X19080045
  16. Alt F., Eschnauer H.R., Mergler B., Messerschmidt J., Tölg G. A contribution to the ecology and enology of platinum // Fresenius J. Analyt. Chem. 1997 V. 357. P. 1013–1019. https://doi.org/10.1007/s002160050296
  17. Ameen K.I., Alabdullatif J.A., AL-Nadhari S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi // Ecotoxicology Environ. Safety. 2021. V. 213. P. 112027. https://doi.org/10.1016/j.ecoenv.2021.112027
  18. Asztemborska M., Steborowski R., Kowalska J., Bystrzejewska-Piotrowska G. Accumulation of aluminum by plants exposed to nano-and microsized particles of Al2O3 // Int. J. Environ. Res. 2015. V. 9. P. 109–116. https://doi.org/10.22059/ijer.2015.880
  19. Ayad M.M., Torad N.L., El-Nasr A.A., Amer W. Study on catalytic efficiency of platinum and silver nanoparticles confined in nanosized channels of a 3-D mesostructured silica // J. Porous Materials. 2021. V. 28. P. 65–79. https://doi.org/10.1007/s10934-020-00960-7
  20. Aygun A., Gülbagca F., Ozer L.Y., Ustaoglu B., Altunoglu Y.C., Baloglu M.C., Atalar M.N., Alma M.H., Sen F. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent // J. Pharmaceutical Biomedical Analysis. 2020. V. 179. P. 112961. https://doi.org/10.1016/j.jpba.2019.112961
  21. Birke M., Rauch U., Stummeyer J., Lorenz H., Keilert B. A review of platinum group element (PGE) geochemistry and a study of the changes of PGE contents in the topsoil of Berlin, Germany, between 1992 and 2013 // J. Geochem. Exploration. 2018. V. 187. P. 72–96. https://doi.org/10.1016/j.gexplo.2017.09.005
  22. Bloch K., Pardesi K., Satriano C., Ghosh S. Bacteriogenic Platinum Nanoparticles for Application in Nanomedicine // Frontiers Chem. 2021.V. 9. P. 624344. https://doi.org/10.3389/fchem.2021.624344
  23. Chlumsky O., Purkrtova S., Michova H., Sykorova H., Slepicka P., Fajstavr D., Ulbrich P., Viktorova J., Demnerova K. Antimicrobial properties of palladium and platinum nanoparticles: A new tool for combating food-borne pathogens // Int. J. Molecular Sci. 2021. V. 22. P. 7892. https://doi.org/10.3390/ijms22157892
  24. Chwalibog A., Sawosz E., Hotowy A., Szeliga J., Mitura S., Mitura K., Grodzik M., Orlowski P., Sokolowska A. Visualization of interaction between inorganic nanoparticles and bacteria or fungi // Int. J. Nanomedicine. 2010. V. 5. P. 1085–1094. https://doi.org/10.2147/IJN.S13532
  25. Cicchella D., Fedele L., De Vivo B., Albanese S., Lima A. Platinum group element distribution in the soils from urban areas of the Campania region (Italy) // Geochemistry Exploration Environment Analysis. 2008. V. 8. P. 31–40. https://doi.org/10.1144/1467-7873/07-149
  26. Cornelis G., Pang L.P., Doolette C., Kirby J.K., McLaughlin M.J. Transport of silver nanoparticles in saturated columns of natural soils // Sci. Total Environ. 2013. V. 463. P. 120–130. https://doi.org/10.1016/j.scitotenv.2013.05.089
  27. De la Rosa G., Garcia-Castaneda C., Vazquez-Nunez E., Alonso-Castro A.J., Basurto-Islas G., Mendoza A., Cruz-Jimenez G., Molina C. Physiological and biochemical response of plants to engineered NMs: Implications on future design // Plant Physiol. Biochem. 2017. V. 110. P. 226–235. https://doi.org/10.1016/j.plaphy.2016.06.014
  28. Dimkpa C.O. Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure // Curr. Opin. Environ. Sci. Health. 2018. V. 6. P. 1–8. https://doi.org/10.1016/j.coesh.2018.06.007
  29. Diong H.T., Das R., Khezri B., Srivastava B., Wang X., Sikdar P.K., Webster R.D. Anthropogenic platinum group element (Pt, Pd, Rh) concentrations in PM10 and PM2.5 from Kolkata, India // SpringerPlus. 2016. V. 5. P. 1242. https://doi.org/10.1186/s40064-016-2854-5
  30. Ek K.H., Rauch S., Morrison G.M., Lindberg P. Environmental routes for platinum group elements to biological materials – a review // Sci. Total Environ. 2004. V. 334–335. P. 149–159. https://doi.org/10.1016/j.scitotenv.2004.04.027
  31. Gopal J., Hasan N., Manikandan M., Wu H. Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers // Scientific Reports. 2013. V. 3. P. 1260.https://doi.org/10.1038/ srep01260
  32. Grimaldi M., Dal Bo.V., Ferrari B., Roda E., Luca F.De., Veneroni P., Barni S. et al. Long-term effects after treatment with platinum compounds, cisplatin and [Pt (O, O'-acac)(γ-acac)(DMS)]: autophagy activation in rat B50 neuroblastoma cells // Toxicol Appl. Pharmacol. 2019. V. 364. P. 1–11. https://doi.org/10.1016/j.taap.2018.12.005
  33. Hasani A., Madhi M., Gholizadeh P., Shahbazi J., Ahangarzadeh Rezaee M., Zarrini, G., Kafil H. Metal nanoparticles and consequences on multi-drug resistant bacteria: reviving their role // SN Appl. Sci. 2019. V. 1. P. 360. https://doi.org/10.1007/s42452-019-0344-4
  34. Huang J., Cao C., Li R., Guan W. Effects of silver nanoparticles on soil ammonia-oxidizing microorganisms under temperatures of 25 and 5°C // Pedosphere. 2018. V. 28. P. 607–616.
  35. Huff C., Biehler E., Quach, Q., Long J.M., Abdel-Fattah T.M. Synthesis of highly dispersive platinum nanoparticles and their application in a hydrogen generation reaction // Colloids Surfaces A: Physicochem. Engineer. Aspects. 2021. V. 610. P. 125734. https://doi.org/10.1016/j.colsurfa.2020.125734
  36. Jarvis K.E., Parry S.J., Piper J.M. Temporal and spatial studies of autocatalyst-derived platinum, rhodium, and palladium and selected vehicle-derived trace elements in the environment // Environ. Sci. Technol. 2001. V. 35. P. 1031–1036. https://doi.org/10.1021/es0001512
  37. Jeyaraj M., Gurunathan, S., Qasim M., Kang M.H., Kim J.H. A Comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles // Nanomaterials. 2019. V. 9. P. 1719. https://doi.org/10.3390/nano9121719
  38. Kabata-Pendias A. Trace Elements in Soils and Plants. Boca Raton, FL: Crc Press, 2010. P. 548.
  39. Kasem K.K. Role of Platinum in Photoelectrochemical Studies Related to Solar Energy Harvesting // Platin. Met. Rev. 2012. V. 56. P. 221–228. https://doi.org/10.1595/147106712X654178
  40. Khan S.A., Shahid. S, Ayaz A, Alkahtani J, Elshikh M.S, Riaz T. Phytomolecules-Coated NiO Nanoparticles Synthesis Using Abutilon indicum Leaf Extract: Antioxidant, Antibacterial, and Anticancer Activities // Int. J. Nanomedicine. 2021. V. 16. P. 1757b1773. https://doi.org/10.2147/IJN.S294012
  41. Kliewer C.J., Somorjai G.A. Structure effects on Pyridine hydrogenation over Pt(111) and Pt(100) studied with sum frequency generation vibrational spectroscopy // Catalysis Lett. 2010. V. 137. P. 118–122.
  42. Kolesnikov S.I., Tsepina N.I., Minnikova T.V., Kazeev K.SH., Mandzhieva S.S., Sushkova S.N., Minkina T.M., Mazarji M., Singh R.K., Rajput V.D. Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem // Plants. 2021. V. 10. P. 1022. https://doi.org/10.3390/plants10051022
  43. Kołton A., Czaja M.A. Influence of platinum ions on the germination and seedling root growth of different plant species // Geology Geophys. Environ. 2014. V. 40. P. 343–348. https://doi.org/10.7494/geol.2014.40.4.343
  44. Kumar P.V., Jelastin Kala S.M., Prakash K.S. Green synthesis derived Pt-nanoparticles using Xanthium strumarium leaf extract and their biological studies // J. Environ. Chem. Engineer. 2019. V. 7. P. 103146. https://doi.org/10.1016/j.jece.2019.103146
  45. Labbé F., Asset T., Chatenet M., Ahmad Y., Guérin K., Metkemeijer R., Berthon-Fabry S. Activity and Durability of Platinum-Based Electrocatalysts with Tin Oxide–Coated Carbon Aerogel Materials as Catalyst Supports // Electrocatalysis. 2019. V. 10. P. 156–172. https://doi.org/10.1007/s12678-018-0505-z
  46. Li Y., Zhang K., Peng S., Lu G., Li J.S. Photocatalytic hydrogen generation in the presence of ethanolamines over Pt/ZnIn2S4 under visible light irradiation // J. Molecular Catalysis A: Chem. 2012. V. 363. P 354–361. https://doi.org/10.1016/j.molcata.2012.07.011
  47. Lushchaeva I.V., Morgalev Y.N. Effect of Platinum Nanoparticles on Biological Activity of Humus-Accumulated Horizons // Adv. Mater. Res. Trans Tech Publ. 2015. V. 1085. P. 384–389. https://doi.org/10.4028/www.scientific.net/amr.1085.384
  48. Manikandana M., Wua H.-F., Hasana N. Cell population-based mass spectrometry using platinum nanodots for algal and fungal studies // Biosensors Bioelectronics. 2012. V. 35. P. 493–497. https://doi.org/10.1016/j.bios.2012.03.020
  49. Martins M., Mourato C., Sanches S., Noronha J.P., Crespo M.B., Pereira I.A. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds // Water Research. 2017. V. 108. P. 160–168. https://doi.org/10.1016/j.watres.2016.10.071
  50. Merget R., Rosner G. Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters // Sci. Total Environ. 2001. V. 270. P. 165–173.
  51. Mitra A., Sen I. Anthrobiogeochemical Platinum, Palladium and Rhodium Cycles of Earth: Emerging Environmental Contamination // Geochim. Cosmochim. Acta. 2017. V. 216. P. 417–432. https://doi.org/10.1016/j.gca.2017.08.025
  52. Moldovan M., Palacios M.A., Gómez M.M. Environmental risk of soluble and particulate platinum group elements released from gasoline and diesel engine catalytic converters // Sci. Total Environ. 2002. V. 296. P. 199–208. https://doi.org/10.1016/s0048-9697(02)00087-6
  53. Molleman B., Hiemstra T. Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium // Environ. Sci. Nano. 2017. V. 4. P. 1314–1327.
  54. Nachtigall D., Kock H., Artelt S., Levsen K., Wünsch G., Rühle T., Schlögl R. Platinum solubility of a substance designed as a model for emissions of automobile catalytic converters // Fresenius J. Anal. Chem. 1996. V. 354. P. 742–746.
  55. OECD. Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. OECD Guidelines for the Testing of Chemicals. Section 2. OECD Publishing. Paris. 2006. 21 p.
  56. Orecchio S., Amorello D. Platinum levels in urban soils from Palermo (Italy). Analytical method using voltammetry // Microchem. J. 2011. V. 99. P. 283–288. https://doi.org/10.1016/j.microc.2011.05.016
  57. Rahman M.S., Chakraborty A., Mazumdar S., Nandi N.C., Bhuiyan M.N.I., Alauddin S.M., Khan I.A., Hossain M.J. Effects of poly(vinylpyrrolidone) protected platinum nanoparticles on seed germination and growth performance of Pisum sativum // Nano-Structures Nano-Objects. 2020. V. 21. P. 100408. https://doi.org/10.1016/j.nanoso.2019.100408
  58. Rajput V.D., Minkina T., Sushkova S., Tsitsuashvili V., Mandzhieva S., Gorovtsov A., Nevidomskyaya D., Gromakova N. Effect of nanoparticles on crops and soil microbial communities // J. Soils Sediments. 2017. V. 18. P. 2179–2187 https://doi.org/10.1007/s11368-017-1793-2
  59. Reith F., Cornelis G. Effect of soil properties on gold- and platinum nanoparticle mobility // Chemical Geology. 2017. V. 466. P. 446–453. https://doi.org/10.1016/j.chemgeo.2017.06.033
  60. Şahin B., Aygün A., Gündüz H., Şahin K., Demir E., Akocak S. et al. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line // Colloids Surf. B Biointerfaces. 2018. V. 163. P. 119–124. https://doi.org/10.1016/j.colsurfb.2017.12.042
  61. Savignan L., Faucher S., Chéry P., Lespes G. Platinum group elements contamination in soils: Review of the current state // Ecotoxicol. Environ. Safe. 2021. V. 222. P. 112459. https://doi.org/10.1016/j.ecoenv.2021.112459
  62. Seckin H., Tiri R.N.E., Meydan I., Aygun A.M., Gunduz K., Sen F. An environmental approach for the photodegradation of toxic pollutants from wastewater using Pt–Pd nanoparticles: Antioxidant, antibacterial and lipid peroxidation inhibition applications // Environ. Res. 2022. V. 208. P. 112708. https://doi.org/10.1016/j.envres.2022.112708
  63. Shar S., Shahsavaria E., Reithc F., Alghamdib O.A., Yamanib H.A., AlJudaibib A., Donnere E., Vasileiadisf S., Ball A.S. Dose-related changes in respiration and enzymatic activities in soils amended with mobile platinum and gold // Appl. Soil Ecol. 2021. V. 157. P. 103727. https://doi.org/10.1016/j.apsoil.2020.103727
  64. Shiny P.J., Mukerjee A., Chandrasekaran N. Comparative assessment of the phytotoxicity of silver and platinum nanoparticles // Proceedings of the international conference on advanced Nanomaterials and emerging engineering technologies. Chennai: Sathyabama University. 2013. P. 391–393. https://doi.org/10.1109/ICANMEET.2013.6609327
  65. Sodeno M., Kato S., Nanao H., Shirai M. Preparation and structural characterization of platinum nanosheets intercalated between graphite powder with high surface area // Catalysis Today. 2020. V. 375. P. 48–55. https://doi.org/10.1016/j.cattod.2020.04.038
  66. Soltanian S., Sheikhbahaei M., Mohamadi N., Pabarja A., Abadi M.F.S., Tahroudi M.H.M. Biosynthesis of Zinc Oxide Nanoparticles Using Hertia intermedia and Evaluation of its Cytotoxic and Antimicrobial Activities // BioNanoScience. 2021. V. 11. P. 245–255. https://doi.org/10.1007/s12668-020-00816-z
  67. The “Global Nanotechnology Market 2021-2026” report has been added to Research and Markets.com's offering. 2021. https://www.prnewswire.com/news-releases/global-nanotechnology-market-report-2021-2026-market-opportunities-with-increasing-use-of-nanotechnology-in-building-materials-301433710.html
  68. Wang J., Gerlach J.D., Savage N., Cobb G.P. Necessity and approach to integrated nanomaterial legislation and governance // Sci. Total Environ. 2013. V. 442. P. 56–62. https://doi.org/10.1016/j.scitotenv.2012.09.073
  69. Wang Y., LI X. Health risk of platinum group elements from automobile catalysts // Procedia Engineering. 2012. V. 45. P. 1004–1009. https://doi.org/10.1016/j.proeng.2012.08.273
  70. World Reference Base for Soil Resources 2014. Update 2015. International soil classification system for naming soils and creating legends for soil maps. 3rd. Rome. FAO, 2015. ISBN 978-92-5-108370-3
  71. Xantini Z., Erasmus E. Platinum supported on nanosilica and fibrous nanosilica for hydrogenation reactions // Polyhedron. 2021. V. 193. P. 114769. https://doi.org/10.1016/j.poly.2020.114769
  72. Yang Q.Q., Li Z.Y., Lu X.N., Duan Q.N., Huang L., Bi J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment // Sci. Total Environ. 2018. V. 42. P. 690–700. https://doi.org/690-70010.1016/j.scitotenv.2018.06.068
  73. You T., Liu D., Chen J., Yang Z., Dou R., Gao X., Wang L. Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types // J. Soils Sediments. 2018. V. 18. P. 211–221. https://doi.org/10.1007/s11368-017-1716-2

Copyright (c) 2023 А.Н. Тимошенко, С.И. Колесников, В.С. Кабакова, Н.А. Евстегнеева, Т.В. Минникова, К.Ш. Казеев, Т.М. Минкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies