Annual Carbon Budget of Biogenic Greenhouse Gases under Mixed Land Use: Lgov District as a Model Object of the Central Chernozem Zone, Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comprehensive study of the net carbon balance of Lgov administrative district (Kursk oblast) in the Chernozem zone of the European part of Russia is carried out. The data sources included field estimates of carbon dioxide and methane exchange between soil and atmosphere, above- and below-ground phytomass stocks, simulation models parameterized on these data, official statistical and meteorological information, and published scientific data. Watered filtration fields of waste disposal sites of sugar industry are responsible for 26% of CH4 emissions from the territory of the district, although they occupy only 0.04% of its area. The maximum of CO2 emission is found at volumetric soil moisture of 30%, whereas, with exceeding this value, methane emission begins to rise linearly, reaching a maximum on the open surface of water reservoirs, and among them – on watered filtration fields. Another significant local source of methane is compost storages (22%). However, water reservoirs and ponds are the largest source of CH4 (43%). Amongst the net sources of CO2 the combustion of fossil fuels by transport and agriculture machinery predominates (22.3%). In contrast to methane, which emission is mainly determined by powerful point sources, the input of net fluxes of CO2 positively correlates with their area. Currently observed low rate net CO2 flux in the district area (–6.4 g C m–2 per year), is decisively overlapped by local methane sources (+95 g C (CO2-eq.) m–2 per year). The influence of the types of land use and methods of calculation on the C-balance of the territory in study, and a way of its transformation into a carbon-neutral state are discussed.

About the authors

D. V. Karelin

Institute of Geography, Russian Academy of Sciences

Author for correspondence.
Email: dkarelin7@gmail.com
Russia, 119017, Moscow

O. E. Sukhoveeva

Institute of Geography, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Russia, 119017, Moscow

M. V. Glagolev

Lomonosov Moscow State University

Email: dkarelin7@gmail.com
Russia, 119991, Moscow

A. S. Dobryanskiy

Institute of Geography, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Russia, 119017, Moscow

A. F. Sabrekov

Ugra State University

Email: dkarelin7@gmail.com
Russia, 628012, Khanty-Mansiysk

I. V. Zamotaev

Institute of Geography, Russian Academy of Sciences

Email: dkarelin7@gmail.com
Russia, 119017, Moscow

References

  1. Гарькуша Д.Н., Федоров Ю.А., Тамбиева Н.С. Крукиер М.Л., Калманович И.В. Оценка эмиссии метана водными объектами Ростовской области // Известия вузов. Северо-Кавказский регион. Сер. Естественные науки. 2015. № 3. С. 83–89.
  2. Гречушникова М.Г., Школьный Д.И. Оценка эмиссии метана водохранилищами России // Водное хозяйство России. 2019. № 2. С. 58–71.
  3. Замотаев И.В., Грачева Р.Г., Михеев П.В., Конопляникова Ю.В. Формирование и трансформация почв в районах размещения отходов сахарной индустрии (обзор) // Почвоведение. 2022. № 8. С. 949–961. https://doi.org/10.31857/S0032180X22080159
  4. Коледа К.В., Дудук А.А., Брукиш Д.А., Бояр Д.М., Витковский Г.В., Емельянова В.Н., Золотарь А.К. Современные технологии возделывания сельскохозяйственных культур: рекомендации. Гродно: ГГАУ, 2010. 340 с.
  5. Копьев С.Ф., Качанов Н.Ф. Основы теплогазоснабжения и вентиляции. М.: Стройиздат, 1964. 228 с.
  6. Люри Д.И., Горячкин С.В., Караваева Н.А., Денисенко Е.А., Нефедова Т.Г. Динамика сельскохозяйственных земель России в ХХ веке и постагрогенное восстановление растительности и почв. М.: ГЕОС, 2010. 416 с.
  7. Методические указания и руководство по количественному определению объема выбросов парниковых газов организациями, осуществляющими хозяйственную и иную деятельность на территории Российской Федерации, утвержденные приказом Минприроды России от 30.06.2015. № 300. https://docs.cntd.ru/document/420287801 (дата обращения 11.01.2023 г.).
  8. Распоряжение Минтранса России от 14.03.2008 № АМ-23-р (ред. от 30.09.2021) “О введении в действие методических рекомендаций "Нормы расхода топлив и смазочных материалов на автомобильном транспорте”. http://www.consultant.ru/document/cons_doc_LAW_ 76009/(дата обращения 11.01.2023 г.).
  9. Типовые нормы выработки и расхода топлива на сельскохозяйственные механизированные работы. Ч. I. http://www.consultant.ru/document/cons_doc_LAW_ 103596/ (дата обращения 11.01.2023 г.).
  10. Типовые нормы выработки и расхода топлива на сельскохозяйственные механизированные работы. Ч. II. http://www.consultant.ru/document/cons_doc_LAW_ 136074/ (дата обращения 11.01.2023 г.).
  11. Титлянова А.А., Шибарева С.В. Продуктивность травяных экосистем: справочник. М.: Изд-во МБА, 2020. 100 с.
  12. Aragão L., Poulter B., Barlow J.B., Anderson L.O., Malhi Y., Saatchi S., Phillips O.L., Gloor E. Environmental change and the carbon balance of Amazonian forests // Biological Reviews. 2014. V. 89. P. 913–931. https://doi.org/10.1111/brv.12088
  13. Bezyk Y., Sówka I., Górka M. Assessment of urban CO2 budget: anthropogenic and biogenic inputs // Urban Climate. 2021. V. 39. P. 100949. https://doi.org/10.1016/j.uclim.2021.100949
  14. Dolman J., Shvidenko A., Schepaschenko D., Ciais P., Tchebakova N., Chen T., van der Molen M.K., Belelli Marchesini L., Maximov T.C., Maksyutov S., Schulze E.-D. An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods // Biogeosciences. 2012. V. 9. P. 5323–5340. https://doi.org/10.5194/bg-9-5323-2012
  15. Friedlingstein P., Jones M.W., O’Sullivan M., Andrew R.M., Bakker D.C.E., Hauck J., Le Quéré C. et al. Global Carbon Budget 2021 // Earth System Science Data. 2022. V. 14. P. 1917–2005. https://doi.org/10.5194/essd-14-1917-2022
  16. Gar’kusha D.N., Fedorov Y.A., Tambieva N.S. Emission of methane from the soils of Rostov oblast // Arid Ecosystems. 2011. V. 1. P. 223–229. https://doi.org/10.1134/S2079096111040056
  17. Gilhespy S.L., Anthony S., Cardenas L., Chadwick D., del Prado A., Li C., Misselbrook T., Rees R.M. et al. First 20 years of DNDC (DeNitrification DeComposition): Model evolution // Ecological modelling. 2014. V. 292. P. 51–62. https://doi.org/10.1016/j.ecolmodel.2014.09.004
  18. IPCC 2006: Annex 2. Summary of equations. 2006 IPC-C Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme / Eds. Eggleston H.S. et al. Japan: IGES, 2006. 34 p.
  19. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Eds. Pachauri R.K., Meyer L.A. Geneva: IPCC, 2014. 151 p.
  20. Karelin D., Goryachkin S., Zazovskaya E., Shishkov V., Pochikalov A., Dolgikh A., Sirin A. et al. Greenhouse gas emission from the cold soils of Eurasia in natural settings and under human impact: Controls on spatial variability // Geoderma Regional. 2020. V. 22. P. 1–18. https://doi.org/10.1016/j.geodrs.2020.e00290
  21. Karelin D.V., Lyuri D.I., Goryachkin S.V., Lunin V.N., Kudikov A.V. Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the chernozems forest-steppe // Eurasian Soil Science. 2015. V. 48. P. 1229–1241. https://doi.org/10.1134/S1064229315110095
  22. Karelin D.V., Zamolodchikov D.G., Shilkin A.V., Popov S.Yu., Kumanyaev A.S., Lopes de Gerenyu V.O., Tel’nova N.O., Gitarskiy M.L. The effect of tree mortality on CO2 fluxes in an old-growth spruce forest // Eur. J. Forest Res. 2021. V. 140. P. 287–305. https://doi.org/10.1007/s10342-020-01330-3
  23. Kull S., Kurz W.A., Rampley G., Banfield G.E., Schivatcheva R.K., Apps M.J. Operational-scale Carbon Budget Model of The Canadian Forest Sector (CBM-CFS3) Version 1.0: User’s Guide. Canadian Forest Service, Northern Forestry Centre, 2007. 319 p.
  24. Kurganova I.N., Lopes de Gerenyu V.O., Kudeyarov V.N., Zhiengaliyev A.T. Carbon budgets in the steppe ecosystems of Russia // Doklady Earth Sciences. 2019. V. 485. P. 450–452. https://doi.org/10.1134/S1028334X19040238
  25. Li C., Frolking S., Frolking T.A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity // J. Geophys. Res. 1992. V. 97. P. D9. P. 9759–9776.
  26. Lloyd J., Kolle O., Fritsch H., de Freitas S.R., Silva Dias M.A.F., Artaxo P., Nobre A.D. et al. An airborne regional carbon balance for Central Amazonia // Biogeosciences. 2007. V. 4. P. 759–768. https://doi.org/10.5194/bg-4-759-2007
  27. Luyssaert S., Inglima I., Jung M., Richardson A.D., Reichstein M., Papale D., Piao S.L. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database // Global Change Biology. 2007. V. 13. P. 2509–2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x
  28. Sabrekov A.F., Glagolev M.V., Kleptsova I.E., Machida T., Maksyutov S.S. Methane emission from bog complexes of the west Siberian taiga // Eurasian Soil Science. 2013. V. 46. P. 1182–1193. https://doi.org/10.1134/S1064229314010098
  29. Sarzhanov D.A., Vasenev V.I., Vasenev I.I., Sotnikov Y.L., Ryzhkov O.V., Morin T. Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia // Catena. 2017. V. 158. P. 131–140. https://doi.org/10.1016/j.catena.2017.06.021
  30. Schmidt M., Reichenau T.G., Fiener P., Schneider K. The carbon budget of a winter wheat field: An eddy covariance analysis of seasonal and inter-annual variability // Agricultural and Forest Meteorology. 2012. V. 165. P. 114–126. https://doi.org/10.1016/j.agrformet.2012.05.012
  31. Schulze E.D., Ciais P., Luyssaert S., Schrumpf M., Janssens I.A., Thiruchittampalam B., Theloke J., Saurat M. et al. The European carbon balance. Part 4: Integration of carbon and other trace-gas fluxes // Global Change Biology. 2010. V. 16(5). P. 1451–1469. https://doi.org/10.1111/j.1365-2486.2010.02215.x
  32. Sukhoveeva O.E., Karelin D.V. Application of the Denitrification-Decomposition (DNDC) model to retrospective analysis of the carbon cycle components in agrolandscapes of the central forest zone of European Russia // Geography, Environment, Sustainability. 2019. V. 12. P. 213–226. https://doi.org/10.24057/2071-9388-2018-85
  33. Sukhoveeva O.E., Zolotukhin A.N., Karelin D.V. Climate-determined changes of organic carbon stocks in the arable chernozem of Kursk region // Arid Ecosystems. 2020. V. 10. P. 148–155. https://doi.org/10.1134/S2079096120020122
  34. Sushko S.V., Ananyeva N.D., Ivashchenko K.V., Kudeyarov V.N. Soil CO2 emission, microbial biomass, and basal respiration of chernozems under different land uses // Eurasian Soil Science. 2019. V. 52. P. 1091–1100. https://doi.org/10.1134/S1064229319090096
  35. Terentieva I.E., Sabrekov A.F., Ilyasov D., Ebrahimi A., Glagolev M.V., Maksyutov S. Highly dynamic methane emission from the west Siberian boreal floodplains // Wetlands. 2019. V. 39. P. 217–226. https://doi.org/10.1007/s13157-018-1088-4
  36. Wright L.A., Kemp S., Williams I. ‘Carbon footprinting’: towards a universally accepted definition // Carbon Management. 2011. V. 2. P. 61–72. https://doi.org/10.4155/cmt.10.39
  37. Zhang H., Wang L. Species diversity and carbon sequestration oxygen release capacity of dominant communities in the Hancang river basin, China // Sustainability. 2022. V. 14. P. 5405. https://doi.org/10.3390/su14095405

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (292KB)
4.

Download (205KB)
5.

Download (86KB)

Copyright (c) 2023 Д.В. Карелин, О.Э. Суховеева, М.В. Глаголев, А.С. Добрянский, А.Ф. Сабреков, И.В. Замотаев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies