The Prokaryotic Community Structure of Oil-Contaminated Chernozem during the Introduction of Nitrate and Potassium Chloride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of nitrate and potassium chloride salts, on the structure of the metabolically active prokaryotic community of oil-contaminated chernozem has been studied. Molecular biological approaches and bioinformatic methods of analysis were used in the study. The objects of the study were samples of chernozem selected in the Voronezh region (N 51°1′41″, E 40°43′31″). The phylogenetic and functional diversity of the prokaryotic complex of oil-contaminated chernozem was considered when introducing nitrate and potassium chloride under conditions of a slightly alkaline reaction of the medium. Contamination of chernozem with oil in an amount of 5% of the soil mass led to alkalinization of the medium from 7.1 to 7.9. The introduction of nitrate and potassium chloride, both separately and together in a total dose of 2 mmol/100 g of soil removed this negative effect. The combined addition of nitrate and potassium chloride led to a more than twofold increase in the biomass of metabolically active prokaryotic cells and the number of copies of functional genes responsible for the synthesis of alkanmonooxygenase enzymes involved in the decomposition of oil. In the presence of oil, the formation of a specific complex of bacteria was revealed, in which representatives of A-ctinobacteria (Rhodococcus erythropolis) and Alphaproteobacteria (Bradyrhizobium japonicum) prevailed. Rhodococcus erythropolis and Bradyrhizobium japonicum, being autochthonous organisms in uncontaminated soil, began to occupy dominant positions in oil-contaminated samples, and the introduction of nitrates enhanced this effect.

About the authors

A. P. Vlasova

Lomonosov Moscow State University

Author for correspondence.
Email: anastasya.nast-vlasova@yandex.ru
Russia, 119991, Moscow

K. V. Pavlov

Lomonosov Moscow State University

Email: manucharova@mail.ru
Russia, 119991, Moscow

E. V. Morachevskaya

Lomonosov Moscow State University

Email: manucharova@mail.ru
Russia, 119991, Moscow

D. N. Lipatov

Lomonosov Moscow State University

Email: manucharova@mail.ru
Russia, 119991, Moscow

L. A. Pozdnyakov

Lomonosov Moscow State University

Email: manucharova@mail.ru
Russia, 119991, Moscow

N. A. Manucharova

Lomonosov Moscow State University

Author for correspondence.
Email: manucharova@mail.ru
Russia, 119991, Moscow

References

  1. Добровольская Т.Г. Структура бактериальных сообществ почв. М.: Академкнига, 2002. 281 с.
  2. Егоров В.В., Иванова Е.Н., Фридланд В.М. Классификация и диагностика почв СССР. М.: Колос, 1977. 221 с.
  3. Коршунова А.В. Рибосомные и кодирующие белки гены (gyrB, alkB и parE) бактерий рода Geobacillus и использование их в таксономии и экологии. Дис. … канд. биол. наук. М., 2014. 124 с.
  4. Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., Stahl D.A. Combination of 16S rRNA-Targeted Oligonucleotide Probes with Flow Cytometry for Analyzing Mixed Microbial Populations // Appl. Environ. Microbiol. 1990. V. 56. P. 1919–1925. https://doi.org/10.1128/aem.56.6.1919-1925
  5. Daims H., Bruhl A., Amann R., Schleifer K., Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set // Systematic Appl. Microbiol. 1999. V. 22. № 3. P. 434–444. https://doi.org/10.1016/S0723-2020(99)80053-8
  6. Dedysh S.N., Panikov N.S., Tiedje J.M. Acidophilic Methanotrophic Communities from Sphagnum Peat Bogs // Appl. Environ. Microbiol. 1998. V. 64. № 3. P. 922–929. https://doi.org/10.1128/AEM.64.3.922-929.1998
  7. Dedysh S.N., Pankratov T.A., Belova S.E., Kulichevskaya I.S., Liesack W. Phylogenetic Analysis and In Situ Identification of Bacteria Community Compositioninan Acidic Sphagnum Peat Bog // Appl. Environ. Microbiol. 2006. V. 72. № 3. P. 2110–2117. https://doi.org/10.1128/AEM.72.3.2110-2117.2006
  8. Hopper W., Mahadevan A. Degradation of catechin by Bradyrhizobium japonicum // Biodegradation. 1997. № 8. P. 159–165. https://doi.org/10.1023/A:1008254812074
  9. Juretschko S., Loy A., Lehner A., Wagner M. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach // Systematic Appl. Microbiol. 2002. V. 25. № 1. P. 84–99. https://doi.org/10.1078/0723-2020-00093
  10. Kok M., Oldenhuis R., vander Linded M.P.G., Meulenberg C.H.C., Kingma J., Witholt B. The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase // J. Biol. Chem. 1989. V. 264. № 10. P. 5442–5451. https://doi.org/10.1016/S0021-9258(18)83565-7
  11. Laczi K., Kis Á., Horváth B. et al. Metabolic responses of Rhodococcuserythropolis PR4 grown on diesel oil and various hydrocarbons // Appl. Microbiol Biotechnol. 2015. V. 99. № 22. P. 9745–9759. https://doi.org/10.1007/s00253-015-6936-z
  12. Manucharova N.A., Ksenofontova N.A., Belov A.A., Kamenskiy N.N., Arzamazova A.V., Zenova G.M., Kinzhaev R.R., Trofimov S.Y., Stepanov A.L. Prokaryotic component of oil-contaminated oligotrophic peat soil under different levels of mineral nutrition: biomass, diversity, and activity // Eurasian Soil Science. 2021. V. 54. № 1. P. 89–97.https://doi.org/10.31857/s0032180x2101010x
  13. Manucharova N.A., Ksenofontova N.A., Karimov T.D., Vlasova A.P., Zenova G.M., Stepanov A.L. Changes in the phylogenetic structure of the metabolically active prokaryotic soil complex induced by oil pollution // Microbiology. 2020. V. 89. № 2. P. 219–230. https://doi.org/10.31857/S0026365620020093
  14. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K.H. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment // Microbiology. 1996. V. 142. P. 1097–1106. https://doi.org/10.1099/13500872-142-5-1097
  15. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.H. Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions // Systematic Appl. Microbiol. 1992. V. 15. I. 4. P. 593–600. https://doi.org/10.1016/S0723-2020(11)80121-9
  16. Meier H., Amann R., Ludwig W., Schleifer K.H. Specific Oligonucleotide Probes for in situ Detection of a Major Group of Gram-positive Bacteria with low DNA G + C Content // Systematic Appl. Microbiol. 1999. V. 22. I. 2. P. 186–196. https://doi.org/10.1016/S0723-2020(99)80065-4
  17. Monciardini P., Sosio M., Cavaletti L., Chiocchini C., Donadio S. New PCR primers for the selective amplification of 16S rDNA from different groups of actinomycetes // FEMS Microbiol. Ecol. 2002. V. 42. № 3. P. 419–429. https://doi.org/10.1111/j.1574-6941.2002.tb01031.x
  18. Neef A., Amann R., Schlesner H., Schleifer K.H. Monitoring a widespread bacterial group: In situ detection of planctomycetes with 16S rRNA-targeted probes // Microbiology. 1998. V. 144. I. 12. P. 3257–3266. https://doi.org/10.1099/00221287-144-12-3257
  19. Rabus R., Wilkes H., Schramm A. et al. Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the beta-subclass of Proteobacteria // Environ. Microbiol. 1999. V. 1. № 2. P. 145–157. https://doi.org/10.1046/j.1462-2920.1999.00014.x
  20. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.H. In situ probing of Gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides // Microbiology. 1994. V. 140. I. 10. P. 2849–2858. https://doi.org/10.1099/00221287-140-10-2849
  21. Stahl D.A. Amann R. Development and application of nucleic acid probes. In Nucleic acid techniques in bacterial systematics / Eds. Stackebrandt E., Goodfellow M. Wiley, 1991. P. 205–248.
  22. Weller R., Glöckner F.O., Amann R. 16S rRNA-Targeted Oligonucleotide Probes for the in situ Detection of Members of the Phylum Cytophaga-Flavobacterium-Bacteroides // Systematic Appl. Microbiol. 2000. V. 23. I. 1. P. 107–114. https://doi.org/10.1016/S0723-2020(00)80051-X
  23. Whyte L.G., Schultz A., Beilen J.B. et al. Assessment of the bio degradation potential of psychrotrophic microorganisms // Can. J. Microbiol. 1996. V. 42. № 2. P. 99–106. https://doi.org/10.1139/m96-016
  24. Whyte L.G., Schultz A., Beilen J.B. et al. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils // FEMS Microbiol. Ecol. 2002. V. 41. № 2. P. 41–50. https://doi.org/10.1111/j.1574-6941.2002.tb00975.x
  25. Whyte L.G., Smits T.H., Labbé D., Witholt B., Greer C.W., van Beilen J.B. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531 // Appl. Environ. Microbiol. 2002. V. 68. № 12. P. 5933–5942. https://doi.org/10.1128/AEM.68.12.5933-5942.2002
  26. Zhili He, Liyou Wu, Matthew W. Fields, Jizhong Zhou. Use of Microarrays with Different Probe Sizes for Monitoring Gene Expression // Appl. Environ. Microbiol. 2005. V. 71. № 9. P. 5154–5162. https://doi.org/10.1128/AEM.71.9.5154-5162.2005

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (58KB)
3.

Download (82KB)
4.

Download (58KB)
5.

Download (205KB)
6.

Download (1MB)

Copyright (c) 2023 А.П. Власова, К.В. Павлов, Е.В. Морачевская, Д.Н. Липатов, Л.А. Поздняков, Н.А. Манучарова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies