Biocontrol Potential of Novel Borrelidin-Producing Streptomyces rochei 3IZ-6 Isolated from Izraeli Soil

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The soil actinobiota of various climatic zones are a rich source of bioactive natural products, including novel drugs. A complex of soil actinomycetes in the upper horizon of the grumusols (Vertisols) on the western coast of Lake Kinneret in the vicinity of Tiberias (Lower Galilee, Israel) was studied. The screening of the antagonistic activity of 26 isolates using on a dual reporter system revealed the bacterial strain 3IZ-6, which had the ability to inhibit protein synthesis. Strain 3IZ-6 was assigned to Streptomyces rochei by polyphase taxonomy approach. The active substance of S. rochei 3IZ-6 was isolated and purified using solid-phase extraction and HPLC. Toe-print analysis and mass spectrometry data allowed to establish, that active compound is a known inhibitor of protein biosynthesis, borrelidin. S. rochei 3IZ-6 can be used as a producer of borrelidin in biocontrol against phytopathogens and weeds.

About the authors

I. G. Shirokikh

Rudnitsky Federal Agricultural Research Center of the North-East

Email: juline@soil.msu.ru
Russia, 610007, Kirov

N. A. Bokov

Rudnitsky Federal Agricultural Research Center of the North-East

Email: juline@soil.msu.ru
Russia, 610007, Kirov

Ya. I. Nazarova

Rudnitsky Federal Agricultural Research Center of the North-East

Email: juline@soil.msu.ru
Russia, 610007, Kirov

A. A. Shirokikh

Rudnitsky Federal Agricultural Research Center of the North-East

Email: juline@soil.msu.ru
Russia, 610007, Kirov

E. B. Guglya

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Pirogov Russian National Research Medical University

Email: juline@soil.msu.ru
Russia, 117997 , Moscow; Russia, 117997, Moscow

O. A. Belozerova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry

Email: juline@soil.msu.ru
Russia, 117997 , Moscow

M. V. Biryukov

Lomonosov Moscow State University

Email: juline@soil.msu.ru
Russia, 119991, Moscow

V. I. Marina

Lomonosov Moscow State University; Skolkovo Institute of Science and Technology, Center of Life Sciences

Email: juline@soil.msu.ru
Russia, 119991, Moscow; Russia, 121205, Moscow

D. A. Lukianov

Lomonosov Moscow State University; Skolkovo Institute of Science and Technology, Center of Life Sciences

Email: juline@soil.msu.ru
Russia, 119991, Moscow; Russia, 121205, Moscow

I. A. Osterman

Lomonosov Moscow State University; Skolkovo Institute of Science and Technology, Center of Life Sciences

Email: juline@soil.msu.ru
Russia, 119991, Moscow; Russia, 121205, Moscow

Yu. V. Zakalyukina

Lomonosov Moscow State University

Author for correspondence.
Email: juline@soil.msu.ru
Russia, 119991, Moscow

References

  1. Гаузе Г.Ф., Преображенская Т.П., Свешникова М.А., Терехова Л.П., Максимова Т.С. Определитель актиномицетов: роды Streptomyces, Streptoverticillium, Chainia. М.: Наука, 1983. 248 с.
  2. Звягинцев Д.Г., Зенова Г.М. Экология актиномицетов. М.: ГЕОС, 2001. 256 с.
  3. Кожевникова И.А., Швейкина В.И. Моделирование колебаний уровня озера Кинерет // Водные ресурсы. 2014. Т. 41. № 6. С. 565–572.
  4. Озиранский Ю.С., Кольмакова Е.Г., Марголина И.Л. Интегрированное управление ограниченными водными ресурсами в целях устойчивого водообеспечения аридных регионов (опыт государства Израиль // Аридные экосистемы. 2014. Т. 20. № 4(61). С. 57–65.
  5. Станчева Й. Атлас болезней сельскохозяйственных культур. София-М.: Пенсофт, 2005. 175 с.
  6. Шапиро М.Б. Почвы Израиля // Почвоведение. 2006. № 11. С. 1300–1307.
  7. Alferova V.A., Maviza T.P., Biryukov M.V., Zakalyukina Y.V., Lukianov D.A., Skvortsov D.A., Osterman I.A. Biological evaluation and spectral characterization of a novel tetracenomycin X congener // Biochimie. 2022. V. 192. P. 63–71. https://doi.org/10.1016/j.biochi.2021.09.014
  8. Atlas R.M. Handbook of microbiological media. CRC Press, 2004. 2056 р.
  9. Baranova A.A., Chistov A.A., Tyurin A.P., Prokhorenko I.A., Korshun V.A., Biryukov M.V., Zakalyukina Y.V. Chemical ecology of streptomyces albidoflavus strain a10 associated with carpenter ant camponotus vagus // Microorganisms. 2020. V. 8. № 12. P. 1948.
  10. Belimov A.A., Dietz K.-J. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations // Microbiol. Res. 2000. V. 155. № 2. P. 113–121. https://doi.org/10.1016/S0944-5013(00)80046-4
  11. Berger J., Jampolsky L.M., Goldberg M.W. Borrelidin, a new antibiotic with antiborrelia activity and penicillin enhancement properties // Arch. Biochem. 1949. V. 22. № 3. P. 476–478.
  12. Bergey’s Manual of systematic bacteriology. V. 5. The Actinobacteria. Part A. / Eds. M. Goodfellow et al. N.Y.: Springer, 2012. 2083 p.
  13. Cao Z., Khodakaramian G., Arakawa K., Kinashi H. Isolation of borrelidin as a phytotoxic compound from a potato pathogenic Streptomyces strain // Biosci. Biotechnol. Biochem. 2012. V. 76. № 2. P. 353–357. https://doi.org/10.1271/bbb.110799
  14. Chen Y.-Y., Chen P.-C., Tsay T.-T. The biocontrol efficacy and antibiotic activity of Streptomyces plicatus on the oomycete Phytophthora capsici // Biol. Control. 2016. V. 98. C. 34–42. https://doi.org/10.1016/j.biocontrol.2016.02.011.
  15. Gao Y.-M., Gao Y.M., Wang X.J., Zhang J., Li M., Liu C.X., An J., Xiang W. S. Borrelidin, a potent antifungal agent: insight into the antifungal mechanism against Phytophthora sojae // J. Agric. Food Chem. 2012. V. № 39. P. 9874–9881. https://doi.org/10.1021/jf302857x
  16. Habibi D., Ogloff N., Jalili R. B., Yost A., Weng A.P., Ghahar, A., Ong C.J. Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia // Invest New Drugs. 2012. V. 30. № 4. P. 1361–1370. https://doi.org/10.1007/s10637-011-9700-y
  17. Hamed A., Abdel-Razek A.S., Frese M., Wibberg D., El-Haddad A.F., Ibrahim T.M., Kalinowski J. et al. N-Acetylborrelidin B: a new bioactive metabolite from Streptomyces mutabilis sp. MII // Z Naturforsch C. 2018. V. 73. № 1–2. P. 49–57. https://doi.org/10.1515/znc-2017-0140
  18. Hazan N., Stein M., Agnon A., Marco S., Nadel D., Negendank J. F., Neev D. The late Quaternary limnological history of Lake Kinneret (Sea of Galilee), Israel // Quat. Res. 2005. V. 63. № 1. P. 60–77. https://doi.org/10.1016/j.yqres.2004.09.004
  19. Li M., Zhang J., Liu C., Fang B., Wang X., Xiang W. Identification of borrelidin binding site on threonyl-tRNA synthetase // BBRC. 2014. V. 451. № 4. P. 485–490. https://doi.org/10.1016/j.bbrc.2014.07.100
  20. Lumb M., Macey P.E., Spyvee J., Whitmarsh J.M., Wright R.D. Isolation of Vivomycin and Borrelidin, Two Antibiotics with Anti-Viral Activity, from a Species of Streptomyces (C2989) // Nature. 1965. V. 206. № 4981. P. 263–265. https://doi.org/10.1038/206263a0
  21. Olano C., Moss S J., Braña A.F., Sheridan R.M., Math V., Weston A.J., Salas J.A. Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: insights into nitrile formation† // Mol. Microbiol. 2004. V. 52. № 6. P. 1745–1756. https://doi.org/10.1111/j.1365-2958.2004.04090.x
  22. Orelle C., Carlson S., Kaushal B., Almutairi M.M., Liu H., Ochabowicz A., Mankin A.S. Tools for characterizing bacterial protein synthesis inhibitors // Antimicrob. Agents Chemother. 2013. V. 57. № 12. P. 5994–6004. http://aac.asm.org/content/57/12/5994
  23. Osterman I.A., Komarova E.S., Shiryaev D.I., Korniltsev I.A., Khven I.M., Lukyanov D.A., Dontsova O.A. Sorting Out Antibiotics’ Mechanisms of Action: a Double Fluorescent Protein Reporter for High-Throughput Screening of Ribosome and DNA Biosynthesis Inhibitors // Antimicrob. Agents Chemother. 2016. V. 60. № 12. P. 7481–7489. https://doi.org/10.1128/AAC.02117-16
  24. Otoguro K., Ui H., Ishiyama A., Kobayashi M., Togashi H., Takahashi Y., Masuma R. et al. In Vitro and in Vivo Antimalarial Activities of a Non-glycosidic 18-Membered Macrolide Antibiotic, Borrelidin, against Drug-resistant Strains of Plasmodia // J. Antibiot. 2003. V. 56. № 8. P. 727–729. https://doi.org/10.7164/antibiotics.56.727
  25. Rai R.V., Bai J.A. Natural Products from Actinomycetes: Diversity, Ecology and Drug Discovery. Mysore, Karnataka, India, 2022. 512 p. https://doi.org/10.1007/978-981-16-6132-7
  26. Shiriaev D.I., Sofronova A.A., Berdnikovich E.A., Lukianov D.A., Komarova E.S., Marina V.I., Dontsova O.A. Nybomycin inhibits both fluoroquinolone-sensitive and fluoroquinolone-resistant Escherichia coli DNA gyrase // Antimicrob. Agents Chemother. 2021. V. 65 № 5. P. e00777-20. https://doi.org/10.1128/AAC.00777-20
  27. Shirling E.B., Gottlieb D. Methods for characterization of Streptomyces species // Int. J. Syst. Bact. 1966. V. 16. № 3. P. 313–340.
  28. Singer A. The Soils of Israel. Berlin, Heidelberg: Springer, 2007. 306 p.https://doi.org/10.1007/978-3-540-71734-8
  29. Sun J., Shao J., Sun C., Song Y., Li Q., Lu L., Ju J. Borrelidins F–I, cytotoxic and cell migration inhibiting agents from mangrove-derived Streptomyces rochei SCSIO ZJ89 // Bioorg. Med. Chem. 2018. V. 26 № 8. P. 1488–1494. https://doi.org/10.1016/j.bmc.2018.01.010
  30. Volynkina I.A., Zakalyukina Y.V., Alferova V.A., Belik A.R., Yagoda D.K., Nikandrova A.A., Buyuklyan Y.A. et al. Mechanism-Based Approach to New Antibiotic Producers Screening among Actinomycetes in the Course of the Citizen Science Project // Antibiotics. 2022. V. 9. № 11. P. 1198. https://doi.org/10.20944/preprints202208.0132.v1
  31. Yu M., Li Y., Banakar S. P., Liu L., Shao C., Li Z., Wang C. New metabolites from the co-culture of marine-derived actinomycete Streptomyces rochei MB037 and fungus Rhinocladiella similis 35 // Front. Microbiol. 2019. V. 10. P. 915. https://doi.org/10.3389/fmicb.2019.00915
  32. Zakalyukina Y.V., Osterman I.A., Wolf J., Neumann-Schaal M., Nouioui I., Biryukov M.V. Amycolatopsis camponoti sp. nov., new tetracenomycin-producing actinomycete isolated from carpenter ant Camponotus vagus // Antonie van Leeuwenhoek. 2022. V. 115. № 4. P. 533–544. https://doi.org/10.1007/s10482-022-01716-w
  33. Zakalyukina Y.V., Zaytsev A.R., Biryukov M.V. Study of Cellulose-Destroying Activity of Actinobacteria Associated with Ants // Moscow Univ. Biol. Sci. Bull. 2021. V. 76. № 1. P. 20-27. https://doi.org/10.3103/S0096392521010065
  34. European Soil Data Centre [Электронный ресурс]. URL: https://esdac.jrc.ec.europa.eu/images/Eudasm/Asia/ images/maps/download/IL3002_SO.jpg

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (186KB)
3.

Download (173KB)
4.

Download (864KB)

Copyright (c) 2023 И.Г. Широких, И.А. Остерман, Д.А. Лукьянов, В.И. Марина, М.В. Бирюков, О.А. Белозерова, Е.Б. Гугля, А.А. Широких, Я.И. Назарова, Н.А. Боков, Ю.В. Закалюкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies