Biotechnological Potential of Hydrolytic Prokaryotic Component in Soils

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phylogenetic and functional diversity of a prokaryotic complex with biotechnological potential (carrying out the destruction of biopolymers, hydrocarbons; capable of synthesizing secondary metabolites; nitrogen fixation process) in soil and associated ecosystems has been studied. In order to identify the specifics of the development of metabolically active prokaryotes with biotechnological potential, the patterns of their distribution and the dependence of functional activity on the main environmental factors have been established. The study used molecular biological and bioinformatic approaches. The range of samples studied included modern soils (Volgograd, Tula, Moscow regions, Siberia and the Northern part of Central Kamchatka), relict habitats (Volgograd Region and Central Kamchatka) and permafrost soils of Antarctica (King George Island). The impact of anthropogenic and abiogenic loads on the development of the prokaryotic community was considered. In soils exposed to anthropogenic or abiogenic loads, along with a decrease in the diversity and abundance of prokaryotes, an increase in the number of genes marking the ability of a community to biodegradate xenobiotics, as well as genes encoding nitrogen transformations and the level of metabolism of cofactors and vitamins was found. The bacterial complex is capable of nitrification with high oil contamination of the soil, and its role also increases in the lower layers of the soil profile. Archaea play a leading role in the nitrification process in undisturbed soils. The revealed patterns indicate a high metabolic potential of the prokaryotic component of the objects under consideration and open up opportunities for biotechnological use of strains isolated from relict habitats.

About the authors

N. A. Manucharova

Lomonosov Moscow State University

Author for correspondence.
Email: manucharova@mail.ru
Russia, 119991, Moscow

M. A. Kovalenko

Lomonosov Moscow State University

Email: manucharova@mail.ru
Russia, 119991, Moscow

M. G. Alekseeva

Lomonosov Moscow State University

Email: manucharova@mail.ru
Russia, 119991, Moscow

A. D. Babenko

Lomonosov Moscow State University

Email: manucharova@mail.ru
Russia, 119991, Moscow

A. L. Stepanov

Lomonosov Moscow State University

Email: manucharova@mail.ru
Russia, 119991, Moscow

References

  1. Добровольская Т.Г., Головченко А.В., Юрченко Е.Н., Якушев А.В., Манучарова Н.А., Лысак Л.В., Костина Н.В. Структура и функции бактериальных сообществ регрессивных пятен верхового торфяника. Микробиология. 2020. Т. 89. № 1. С. 111–120. https://doi.org/10.31857/S0026365620010061
  2. Кольцова Е.М. Cтруктурно-функциональная характеристика гидролитической составляющей реликтовых прокариотных сообществ. Дис. … канд. биол. наук. М., 2017. 139 с.
  3. Кряжевских Н.А., Демкина Е.В., Лойко Н.Г., Баслеров Р.В., Колганова Т.В., Соина В.С., Манучарова Н.А., Гальченко В.Ф., Эль-Регистан Г.И.Сравнение адаптационного потенциала изолятов из вечномерзлых осадочных пород Arthrobacter oxydans и Acinetobacter lwoffii и их коллекционных аналогов // Микробиология. 2013. Т. 82. № 1. С. 27–41. https://doi.org/10.7868/S0026365613010059
  4. Соляникова И.П., Сузина Н.Е., Мулюкин А.Л., Эль-Регистан Г.И., Головлева Л.А. ВлияниесостоянияпокоянаштаммPseudomonas fluorescens 26K – деструкторксенобиотиков // Микробиология. 2013. Т. 82. № 5. С. 552. https://doi.org/10.7868/S0026365613050145
  5. Феофилова Е.П. Торможение жизненной активности как универсальный биохимический механизм адаптации микроорганизмов к стрессовым воздействиям // Прикладная биохимия и микробиология. 2003. Т. 39. № 1. С. 5–24. https://doi.org/10.1023/A:1021774523465
  6. Эль-Регистан Г.И. Покой как форма адаптации микроорганизмов // Механизмы выживания бактерий. М.: Медицина, 2005. С. 11–142. https://search.rsl.ru/ru/record/01002681279
  7. Эль-Регистан Г.И., Мулюкин А.Л., Николаев Ю.А., Сузина Н.Е., Гальченко В.Ф., Дуда В.И. Адаптогенные функции внеклеточных ауторегуляторов микроорганизмов // Микробиология. 2006. Т. 75. № 4. С. 446–456. https://doi.org/10.1134/S0026261706040035
  8. Abraham W.R., Nogales B., Golyshin P.N., Pieper D.H., Timmis K.N. Polychlorinated biphenyl-degrading microbial communities in soils and sediments // Curr. Opin. Microbiol. 2002. V. 5. № 3. P. 246–53. https://doi.org/10.1016/s1369-5274(02)00323-5
  9. Adair K.L. Schwartz E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA // Microb. Ecol. 2008. V. 56. P. 420–426. https://doi.org/10.1007/s00248-007-9360-9
  10. Anderson M.J. A new method for non-parametric multivariate analysis of variance // Austral. Ecol. 2001. V. 26. P. 32–46. https://www.pelagicos.net/MARS6300/homework/hw6/ Anderson_2001.pdf
  11. Bartilson M., Nordlund I., Shingler V. Nucleotide sequence and expression of the catechol 2,3-dioxygenaseencoding gene of phenol catabolizing Pseudomonas CF600 // Gene. 1989. V. 85. P. 233–238. https://doi.org/10.1016/0378-1119(89)90487-3
  12. Boden R., Hutt L.P., Rae A.W. Reclassification of Thiobacillusaquaesulis (Wood & Kelly, 1995) as Annwoodiaaquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales // Int. J. Syst. Evol. Microbiol. 2017. V. 67. P. 1191–1205. https://doi.org/10.1099/ijsem.0.001927
  13. Bray J.R., Curtis J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin // Ecol. Monogr. 1957. V. 27. № 4. P. 325–349. https://doi.org/10.2307/1942268
  14. Bürgmann H., Widmer F., Sigler W.V., Zeyer J. mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil // Appl. Environ. Microbiol. 2003. V. 69. P. 1928–1935. https://doi.org/10.1128/AEM.69.4.1928-1935.2003
  15. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N. et al. QIIME allows analysis of high-throughput community sequencing data // Nat. Methods. 2010. V. 7. № 5. P. 335–336. https://doi.org/.1038/nmeth.f.303
  16. Chen J., Del Genio A.D., Carlson B.E., Bosilovich M.G. The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. P. I: Long-term trend // J. Climate. 2008. V. 21. P. 2611–2633. https://doi.org/10.1175/2007JCLI2011.1
  17. DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB // Appl. Environ. Microbiol. 2006. V. 72. № 7. P. 5069–5072. https://doi.org/10.1128/AEM.03006-05
  18. Edgar R.C. Search and clustering orders of magnitude faster than BLAST // Bioinformatics. 2010. V. 26. № 19. P. 2460-1. https://doi.org/10.1093/bioinformatics/btq461
  19. Faith D.P., Baker A.M. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges // Evol. Bioinform. Online. 2006. V. 2. P. 121–128. https://doi.org/10.4137/ebo.s0
  20. Gaby J.C., Buckley D.H. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria // Database (Oxford). 2014. V. 2014. P. bau001. https://doi.org/10.1093/database/bau001
  21. Hallin S., Jones C. M., Schloter M., Philippot L. Relationship between n-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment // ISME J. 2009. V. 53. P. 597–605. https://doi.org/10.1038/ismej.2008.128
  22. Harayama S., Rekik M. Bacterial aromatic ring cleavage enzymes are classified into two different gene families // J. Biol. Chem. 1989. V. 264. P. 15328–15333. https://www.jbc.org/article/S0021-9258(19)84830-5/pdf
  23. Hendrickx B., Junca H., Vosahlova J., Lindner A., Ruegg I., Bucheli-Witschel M., Faber F. et al. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: Distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site // J. Microbiol. Methods. 2006. V. 64. P. 250–265. https://doi.org/10.1016/j.mimet.2005.04.018
  24. Henry S., Baudouin E., López–Gutiérrez J.C., Martin–Laurent F., Brauman A., Philippot L. Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR // J. Microbiol. Methods. 2004. V. 59. P. 327–335. https://doi.org/10.1016/J.MIMET.2004.07.002
  25. Hiraishi A., Ueda Y. Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonasrosea as Rhodoplanesroseus comb. nov. and Rhodoplaneselegans sp. nov. // Int. J. Syst. Bacteriol. 1994. V. 44. P. 665–673. https://doi.org/10.1099/00207713-44-4-665
  26. Kanehisa M., Goto S., Sato Y., Furumichi M., Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets // Nucleic Acids Res. 2012. V. 40. Database issue. P. 109–114. https://doi.org/10.1093/nar/gkr988
  27. Kaprelyants A.S., Mukamolova G. V., Davey H.M., Kell D.B. Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting // Appl. Environ. Microbiol. 1996. V. 62. № 4. P. 1311–1316. https://doi.org/10.1128/aem.62.4.1311-1316.1996
  28. Kok M., Oldenhuis R., van der Linden M. P. G., Raatjes P., Kingma J., van Lelyveld P.H. The Pseudomonas oleovorans alkane hydroxylase gene, sequence and expression // J. Biological Chem. 1989. V. 264. P. 5435–5441. https://doi.org/10.1016/S0021-9258(18)83564-5
  29. Langille M., Zaneveld J., Caporaso J.G., McDonald D., Knights D., Reyes J., Clemente J., Burkepile D. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences // Nat. Biotechnol. 2013. V. 31. № 9. P. 814–821. https://doi.org/10.1038/nbt.2676
  30. Manucharova N.A., Ksenofontova N.A., Belov A.A., Kamenskiy N.N., Arzamazova A.V., Zenova G.M., Kinzhaev R.R., Trofimov S.Y., Stepanov A.L. Prokaryotic component of oil-contaminated oligotrophic peat soil under different levels of mineral nutrition: biomass, diversity, and activity // Eurasian Soil Science. 2021. V. 54. № 1. P. 89–97. https://doi.org/10.31857/s0032180x2101010x
  31. Markowitz V.M., Chen I.-M.A., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A. et al. IMG: the Integrated Microbial Genomes database and comparative analysis system // Nucleic Acids Res. 2012. V. 40. Database issue. P. D115-22. https://doi.org/10.1093/nar/gkr1044
  32. McIlroy S.J., Nielsen P.H. The Prokaryotes / Eds E. Rosenberg et al. Berlin: Springer, 2014. P. 863–889. https://doi.org/10.1007/978-3-642-39044-9
  33. Nichols D., Lewis K., Orjala J., Mo S., Ortenberg R., O’Connor P., Zhao C., Vouros P., Kaeberlein T., Epstein S.S. Short peptide induces an “uncultivable” microorganism to grow in vitro // Appl. Environ. Microbiol. 2008. V. 74. № 15. P. 496. https://doi.org/10.1128/AEM.00393-08
  34. Pantanella F., Berlutti F., Passariello C., Sarli S., Morea C., Schippa S.Violacein and biofilm production in Janthinobacteriumlividum // J. Appl. Microbiol. 2007. V. 102. № 4. P. 992–999. https://doi.org/10.1111/j.1365-2672.2006.03155.x
  35. Price M.N., Dehal P.S., Arkin A.P. FastTree 2 – Approximately Maximum-Likelihood Trees for large alignments // PLoS One. 2010. V. 5. № 3. P. e9490. https://doi.org/10.1371/journal.pone.0009490
  36. Rotthauwe J., Witzel K. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations // Appl. Environ. Microbiol. 1997. V. 63. P. 4704–4712. https://doi.org/10.1128/aem.63.12.4704-4712.1997
  37. Somanadhan B., Kotturi S.R., Yan Leong C., Glover R.P., Huang Y., Flotow H., Buss A.D., Lear M.J., Butler M.S. Isolation and synthesis of falcitidin, a novel myxobacterial-derived acyltetrapeptide with activity against the malaria target falcipain-2 // J. Antibiot. (Tokyo). 2013. V. 66. № 5. P. 259–264. https://doi.org/10.1038/ja.2012.123
  38. Su X., Chen X., Hu J., Shen C., Ding L. Exploring the potential environmental functions of viable but non-culturable bacteria // World J. Microbiol. Biotechnol. 2013. V. 29. № 12. P. 2213–2218. https://doi.org/10.1007/s11274-013-1390-5
  39. Takashi Itoh, Kaoru Yamanoi, Takuji Kudo, Moriya Ohkuma, Tomonori Takashina. Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field // Int. J. Systematic Evolutionary Microbiol. 2011. V. 61 P. 1281–1285. https://doi.org/10.1099/ijs.0.023044-0
  40. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy // Appl. Environ. Microbiol. 2007. V. 73. № 16. P. 5261–5267. https://doi.org/10.1128/AEM.00062-07
  41. Whyte L.G., Schultz A., van Beiden J.B., Luz A.P., Pellizari V., Labbé D., Greer C.W. Prevalence of alkane monooxygenase genes in Arctic and Antarctic hydrocarbon-contaminated and pristine soils // FEMS Microbiol. Ecol. 2002. V. 41. P. 141–150. https://doi.org/10.1111/j.1574-6941.2002.tb00975.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (386KB)
3.

Download (172KB)
4.

Download (162KB)
5.

Download (103KB)
6.

Download (183KB)
7.

Download (92KB)
8.

Download (151KB)

Copyright (c) 2023 Н.А. Манучарова, М.А. Коваленко, М.Г. Алексеева, А.Д. Бабенко, А.Л. Степанов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies