Changing the Phosphate Regime of Soils in the Middle Taiga When Using Biochar

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of wood biochar on the content of various forms of phosphates was studied in laboratory experiments on soils with different phosphorus availability. Soils of the middle taiga subzone of Karelia were used in this work: a sandy Umbric Podzol and a heavy loamy Umbric Retisol. The tests studied the effect of two fractions of biochar (3–5 and ≤2 mm) in an amount of 2% and 5% of soil mass on pHKCl, the content of available and total phosphorus, the inorganic phosphorus fractions (Chang-Jackson method), and the total phosphatase activity of soils, as well as the effect of separate and combined application of biochar and fertilizer (NPK) on the content of available phosphorus in a pot experiment with spring barley. The research revealed that biochar significantly increased the content of available phosphorus by 20–40%, increased the content of the fraction of Ca-bounded P, Al-bounded P and loosely-bounded P, and also increased the phosphatase activity in the Umbric Podzol. In pot experiment was noted a higher content of P2O5 in variants with biochar ≤2 mm, in variants with fertilizer, and a significant mutual influence factors of biochar and fertilizer. Biochar increased the content of available phosphorus by 2–6%, increased the content of Ca-bounded P and loosely-bounded P (with biochar ≤2 mm at 5% dosage), and had no significant effect on the phosphatase activity in the Umbric Retisol. Only combination of biochar ≤2 mm and fertilizer had a significant effect in pot experiment with Umbric Retisol. In general, the most noticeable effect on almost all studied indicators was provided by ≤2 mm fraction of biochar in a 5% dosage. The use of biochar led to statistically significant increase in pHKCl values, and did not affect the content of total phosphorus in both soils. Biochar had a greater effect on the phosphate regime of coarse-textured soil with an initially lower pH and a less content of available and total phosphorus.

About the authors

I. A. Dubrovina

Institute of Biology of Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: vorgo@mail.ru
Russia, 185910, Petrozavodsk

References

  1. Дубровина И.А. Динамика физико-химических свойств дерново-подзолистых почв при внесении биоугля // Проблемы агрохимии и экологии. 2019. № 2. С. 19–23. https://doi.org/10.26178/AE.2019.51.56.004
  2. Дубровина И.А., Юркевич М.Г., Сидорова В.А. Влияние биоугля и удобрений на развитие растений ячменя и агрохимические показатели дерново-подзолистых почв в вегетационном опыте // Тр. КарНЦ РАН. 2020. № 3. С. 31–44. https://doi.org/10.17076/eb1087
  3. Каширская Н.Н., Плеханова Л.Н., Чернышева Е.В., Ельцов М.В., Удальцов С.Н., Борисов А.В. Пространственно-временные особенности фосфатазной активности естественных и антропогенно-преобразованных почв // Почвоведение. 2020. № 1. С. 89–101. https://doi.org/10.31857/S0032180X20010098
  4. Кирпичников Н.А. Влияние извести на фосфатный режим cлабоокультуренной дерново-подзолистой почвы при длительном применении удобрений // Агрохимия. 2016. № 12. С. 3–8.
  5. Кудеярова А.Ю. Хемосорбция фосфат-ионов и деструкция органо-минеральных сорбентов в кислых почвах // Почвоведение. 2010. № 6. С. 681–697.
  6. Лыскова И.В., Рылова О.Н., Веселкова Н.А., Лыскова Т.В. Влияние удобрений и извести на агрохимические показатели и фосфатный режим дерново-подзолистой среднесуглинистой почвы // Аграрная наука Евро-Северо-Востока. 2015. № 2(45). С. 27–31.https://doi.org/10.30766/2072-9081.2015.45.2.27-32
  7. Минеев В.Г., Коваленко А.А., Ваулин А.В., Афанасьев Р.А. Влияние фосфорных удобрений на агрохимические свойства дерново-подзолистой почвы и урожайность сельскохозяйственных культур // Агрохимия. 2009. № 10. С. 3–10.
  8. Митрофанова Е.М., Васбиева М.Т. Фосфатный режим дерново-подзолистой почвы при длительном применении органических и минеральных удобрений // Агрохимия. 2014. № 9. С. 13–19.
  9. Михайлова Л.А., Дербенева Л.В. Влияние известкования на фосфатный режим дерново-подзолистых почв разной степени окультуренности // Аграрная наука Евро-Северо-Востока. 2007. №10. С. 28–32.
  10. Орлов Д.С. Химия почв. М.: Изд-во Моск. ун-та, 1992. 400 с.
  11. Потатуева Ю.А. Эколого-агрохимическая оценка фосфорных и фосфорсодержащих удобрений в длительных полевых опытах // Агрохимия. 2013. № 6. С. 83–94.
  12. Самсонова Н.Е., Родченков С.Н. Использование удобрений с пониженной растворимостью фосфатного компонента и фосфатное состояние дерново-подзолистых почв // Агрохимия. 2007. № 9. С. 24–31.
  13. Теория и практика химического анализа почв / Под ред. Л.А. Воробьевой. М.: ГЕОС, 2006. 400 с.
  14. Хазиев Ф.Х. Методы почвенной энзимологии. М.: Наука, 2005. 254 с.
  15. Шафран С.А., Кирпичников Н.А. Научные основы прогнозирования содержания подвижных форм фосфора и калия в почвах // Агрохимия. 2019. № 4. С. 3–10. https://doi.org/10.1134/S0002188119040112
  16. Bai S.H., Omidvar N., Gallart M., Kämper W., Tahmasbian I., Farrar M.B., Singh K., Zhou G., Muqadass B., Xu C.-Y., Koech R., Li Y., Nguyen T.T.N., van Zwieten L. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis // Sci. Total Environ. 2022. V. 808. 152073. https://doi.org/10.1016/j.scitotenv.2021.152073
  17. Bornø M.L., Müller-Stöver D.S., Liu F. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types // Sci. Total Environ. 2018. V. 627. P. 963–974. https://doi.org/10.1016/j.scitotenv.2018.01.283
  18. Chen M., Alim N., Zhang Y., Xu N., Cao X. Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils // Environ. Poll. 2018. V. 239. P. 562–570. https://doi.org/10.1016/j.envpol.2018.04.050
  19. Dai Z., Zhang X., Tang C., Muhammad N., Wu J., Brookes P. C., Xu J. Potential role of biochars in decreasing soil acidification – A critical review // Sci. Total Environ. 2017. V. 581–582. P. 601–611. https://doi.org/10.1016/j.scitotenv.2016.12.169
  20. Dume B., Tessema D.A., Regassa A., Berecha G. Effects of biochar on phosphorus sorption and desorption in acidic and calcareous soils // Civil Environю Res. 2017. V. 9(5). P. 10–20.
  21. Eduah J.O., Nartey E.K., Abekoe M.K., Breuning-Madsen H., Andersen M.N. Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures // Geoderma. 2019. V. 341. P. 10–17. https://doi.org/10.1016/j.geoderma.2019.01.016
  22. Gao S., DeLuca T.H. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands // Soil Biol. Biochem. 2018. V. 126. P. 144–150. https://doi.org/10.1016/j.soilbio.2018.09.002
  23. Gao S., DeLuca T.H., Cleveland C.C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis // Sci. Total Environ. 2019. V. 654. P. 463–472. https://doi.org/10.1016/j.scitotenv.2018.11.124
  24. Ghodszad L., Reyhanitabar A., Maghsoodi M.R., Lajayer B.A., Chang S.X. Biochar affects the fate of phosphorus in soil and water: A critical review // Chemosphere. 2021. V. 283. P. 131176. https://doi.org/10.1016/j.chemosphere.2021.131176
  25. Ghodszad L., Reyhanitabar A., Oustan S., Alidokht L. Phosphorus sorption and desorption characteristics of soils as affected by biochar // Soil Tilla. Res. 2022. V. 216. P. 105251. https://doi.org/10.1016/j.still.2021.105251
  26. Glaser B., Lehr V.-I. Biochar effects on phosphorus availability in agricultural soils: a meta-analysis // Scientific Rep. 2019. V. 9. P. 1–9. https://doi.org/10.1038/s41598-019-45693-z
  27. He L., Zhong Z., Yang H. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers // J. Integrative Agriculture. 2017. V. 16(3). P. 704–712. https://doi.org/10.1016/S2095-3119(16)61420-X
  28. Liu S., Meng J., Jiang L., Yang X., Lan Y., Cheng X., Chen W. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types // Appl. Soil Ecology. 2017. V. 116. P. 12–22. https://doi.org/10.1016/j.apsoil.2017.03.020
  29. Oladele S.O., Adeyemo A.J., Awodun M.A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and raiN–fed rice yield in two contrasting soils // Geoderma. 2019. V. 336. P. 1–11. https://doi.org/10.1016/j.geoderma.2018.08.025
  30. Raboin L.‑M., Razafimahafaly A.H.D., Rabenjarisoa M.B., Rabary B., Dusserre J., Becquer T. Improving the fertility of tropical acid soils: Liming versus biochar application? A long term comparison in the highlands of Madagascar // Field Crops Res. 2016. V. 199. P. 99–108. https://doi.org/10.1016/j.fcr.2016.09.005
  31. Rafael R.B.A., Fernández-Marcos M.L., Cocco S., Ruello M.L., Fornasier F., Corti G. Increased phosphorus availability to corn resulting from the simultaneous applications of phosphate rock, calcareous rock, and biochar to an acid sandy soil // Pedosphere. 2020. V. 30(6). P. 719–733. https://doi.org/10.1016/S1002-0160(20)60034-0
  32. Sachdeva V., Hussain N., Husk B.R., Whalen J.K. Biochar-induced soil stability influences phosphorus retention in a temperate agricultural soil // Geoderma. 2019. V. 351. P. 71–75. https://doi.org/10.1016/j.geoderma.2019.05.029
  33. Tammeorg P., Simojoki A., Mäkelä P., Stoddard F.L., Alakukku L., Helenius J. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertilizer on a boreal loamy sand // Agriculture, Ecosystems and Environment. 2014. V. 191. P. 108–116. https://doi.org/10.1016/j.agee.2014.01.007
  34. Wang T., Camps-Arbestain M., Hedley M., Bishop P. Predicting phosphorus bioavailability from high-ash biochars // Plant Soil. 2012. V. 357. P. 173–187. https://doi.org/10.1007/s11104-012-1131-9
  35. Wei X., Hu Y., Razavi B.S., Zhou J., Shen J., Nannipieri P., Wu J., Ge T. Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization // Soil Biol. Biochem. 2019. V. 131. P. 62–70. https://doi.org/10.1016/j.soilbio.2018.12.025
  36. Xu G., Sun J., Shao H., Chang S.X. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity // Ecological Engineering. 2014. V. 62. P. 54–60. https://doi.org/10.1016/j.ecoleng.2013.10.027
  37. Yang C., Lu S. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol // Sci. Total Environ. 2022. V. 805. P. 150325. https://doi.org/10.1016/j.scitotenv.2021.150325
  38. Yang F., Sui L., Tang C., Li J., Cheng K., Xue Q. Sustainable advances on phosphorus utilization in soil via addition of biochar and humic substances // Sci. Total Environ. 2021. V. 768. P. 145106. https://doi.org/10.1016/j.scitotenv.2021.145106
  39. Yang L., Wu Y., Wang Y., An W., Jin J., Sun K., Wang X. Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus // Sci. Total Environ. 2021. V. 758. P. 143657. https://doi.org/10.1016/j.scitotenv.2020.143657
  40. Zhai L., Caiji Z., Liu J., Wang H., Ren T., Gai X., Xi B., Liu H. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities // Biol. Ferti. Soils. 2015. V. 51. P. 113–122. https://doi.org/10.1007/s00374-014-0954-3
  41. Zhang M., Cheng G., Feng H., Sun B., Zhao Y., Chen H., Chen J., Dyck M., Wang X., Zhang J., Zhang A. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China // Environ. Sci. Poll. Res. 2017. V. 24. P. 10108–10120. https://doi.org/10.1007/s11356-017-8505-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (217KB)
3.

Download (207KB)
4.

Download (159KB)

Copyright (c) 2023 И.А. Дубровина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies