Environmental Variables in Predictive Soil Mapping

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the well-known conceptual model SCORPAN, given soil property is considered as dependent on the following environmental factors: soil, climate, organisms, topography, time and space. Predictive mapping of soils in digital soil mapping is based on similar ideas, but environmental factors may include not only factors of soils formation, but also, for example, remote sensing data, and have found a wide distribution not only in soil science, but also in ecology, agriculture and geomorphology. This paper provides a review of environmental factors that are used in predictive mapping with a special attention to situations when wide sets of environmental factors may be used and a part of them is not quantitative, such as vegetation types. Most developed are systems of quantitative variables for topography and climate description, so that a special attention is paid to them. Land surface description is performed using both local and non-local variables that need integration. In climate description variables are essential that estimate dry or wet terrain features, such as moisture ratio or water deficit. They need evaluation of potential evapotranspiration that is not measured by meteo-stations, but may be calculated. Possibilities of accounting these and other environmental factors including non-quantitative ones in quantitative statistical models of predictive mapping are described together with principles of their construction, verification, comparison, choice of appropriate models. Examples of soil predictive mapping applications are given for various scales, their specifics for different scales is outlined. Some aspects of remote sensing data usage are discussed.

About the authors

P. A. Shary

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Author for correspondence.
Email: p_shary@mail.ru
Russia, 142292, Moscow region, Pushchino

References

  1. Алексеев А.О., Митенко Г.В., Шарый П.А. Количественные оценки палеоэкологических изменений в позднем голоцене на юге Восточно-Европейской равнины на основе магнитных свойств почв // Почвоведение. 2020. № 12. С. 1425–1435. https://doi.org/10.31857/S0032180X20120023
  2. Барталев С.А., Егоров В.А., Жарко В.О., Лупян Е.А., Плотников Д.Е., Хвостиков С.А., Шабанов Н.В. Спутниковое картографирование растительного покрова России. М.: ИКИ РАН, 2016. 208 с.
  3. Будыко М.И. Тепловой баланс земной поверхности. Л.: Гидрометеоиздат, 1956. 256 с.
  4. Гаусс К.Ф. Общие исследования о кривых поверхностях // Об основаниях геометрии. М.: Гос. изд-во технико-теоретической литературы, 1956. С. 123–161.
  5. Докучаев В.В. Русский чернозем // Избр. соч. М.: Сельхозгиз, 1948. Т. 1. 480 с.
  6. Иванов Н.Н. Ландшафтно-климатические области земного шара // Записки географического общества. М.–Л., 1948. Т. 1. 223 с.
  7. Исаченко А.Г. Ландшафтоведение и физико-географическое районирование. М.: Высшая школа, 1991. 366 с.
  8. Козловский Ф.И. Почвенный индивидуум и методы его определения // Закономерности пространственного варьирования свойств почв и информационно-статистические методы их изучения. М.: Наука, 1970. С. 42–59.
  9. Кузякова И.Ф., Романенков В.А., Кузяков Я.В. Метод геостатистики в почвенно-агрохимических исследованиях // Почвоведение. 2001. № 9. С. 1132–1139.
  10. Матвеев Л.Т. Курс общей метеорологии. Физика атмосферы. Л.: Гидрометеоиздат, 1984. 752 с.
  11. Погребняк П.С. Общее лесоводство. М.: Колос, 1968. 440 с.
  12. Рыльский И.А. Лазерное сканирование и цифровая аэрофотосъемка: новый уровень детальности // Geomatics. 2015. № 4. С. 53–56.
  13. Степанов И.Н., Флоринский И.В., Шарый П.А. О концептуальной схеме исследований ландшафта // Геометрия структур земной поверхности. Пущино, 1991. С. 9–15.
  14. Шарый П.А. Топографический метод вторых производных // Геометрия структур земной поверхности. Пущино, 1991. С. 28–58.
  15. Шарый П.А., Рухович О.В., Шарая Л.С. Методология анализа пространственной изменчивости характеристик урожайности пшеницы в зависимости от условий агроландшафта // Агрохимия. 2011. № 2. С. 57–81.
  16. Шарый П.А., Рухович О.В., Шарая Л.С. Предсказательное моделирование характеристик урожая озимой пшеницы // Цифровая почвенная картография: теоретические и экспериментальные исследования. М.: Почв. ин-т им. В.В. Докучаева, 2012. С. 310–326.
  17. Шарый П.А., Пинский Д.Л. Статистическая оценка связи пространственной изменчивости содержания органического углерода в серой лесной почве с плотностью, концентрацией металлов и рельефом // Почвоведение. 2013. № 11. С. 1344–1356. https://doi.org/10.7868/S0032180X13090104
  18. Шарый П.А., Смирнов Н.С. Механизмы влияния солнечной радиации и анизотропии местности на растительность темнохвойных лесов Печоро-Илычского заповедника // Экология. 2013. № 1. С. 11–19. https://doi.org/10.7868/S0367059713010113
  19. Шарый П.А., Шарая Л.С., Сидякина Л.В. Связь NDVI лесов и характеристик климата Волжского бассейна // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 4. С. 154–163. https://doi.org/10.21046/2070-7401-2020-17-4-154-163
  20. Щепащенко Д.Г., Мухортова Л.В., Швиденко А.З., Ведрова Э.Ф. Запасы органического углерода в почвах России // Почвоведение. 2013. № 2. С. 123–132. https://doi.org/10.7868/S0032180X13020123
  21. Allen R.G., Pereira L.S., Raes D., Smith M. Crop evapotranspiration (quides for computing crop water requirements). FAO irrigation and drainage paper No. 56. 1998. 300 p.
  22. Baltensweiler A., Walthert L., Ginzler C., Sutter F., Purves R.S., Hanewinkel M. Terrestrial laser scanning improves digital elevation models and topsoil pH modelling in regions with complex topography and dense vegetation // Environmental Modelling and Software. 2017. V. 95. P. 13–21.
  23. Beale C.M., Lennon J.J., Yearsley J.M., Brewer M.J., Elston D.A. Regression analysis of spatial data // Ecology Letters. 2010. V. 13. № 2. P. 246–264.
  24. Beers T.W., Dress P.E., Wensel L.C. Aspect transformation in site productivity research // J. Forestry. 1966. V. 64. P. 691–692.
  25. Besag J. Spatial interaction and the statistical analysis of lattice systems // J. Royal Statistical Society. 1974. Series B. V. 36. № 2. P. 192–236.
  26. Behrens T., Förster H., Scholten T., Steinrücken U., Spies E.-D., Goldschmitt M. Digital soil mapping using artificial neural networks // J. Plant Nutrition Soil Sci. 2005. V. 168. № 1. P. 21–33.
  27. Beven K.J., Kirkby M.J. A physically based, variable contributing area model of basin hydrology // Hydrological Sci. Bull. 1979. V. 24. № 1. P. 43–69.
  28. Bishop M.P., James L.A., Shroder J.F. Jr., Walsh S.J. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research // Geomorphology. 2012. V. 137. P. 5–26.
  29. Dormann C.F., McPherson J.M., Araújo M.B., Bivand R., Bolliger J., Carl G., Davies R.G., Hirzel A., Jetz W., Kissling W.D., Kühn I., Ohlemüller R., Peres-Neto P.R., Reineking B., Schröder B., Schurr F.M., Wilson R. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review // Ecography. 2007. V. 30. № 5. P. 609–628.
  30. Evans I.S. General geomorphometry, derivatives of altitude, and descriptive statistics // Spatial Analysis in Geomorphology. London: Methuen & Co., Ltd., 1972. Ch. 2. P. 17–90.
  31. Franklin J. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients // Progress in Physical Geography. 1995. V. 19. № 4. P. 474–499.
  32. Freeman T.G. Calculating catchment area with divergent flow based on a regular grid // Computers and Geosciences. 1991. V. 17. № 3. P. 413–422.
  33. Grimm R., Behrens T., Märker M., Elsenbeer H. Soil organic carbon concentrations and stocks on Barro Colorado Island – Digital soil mapping using Random Forests analysis // Geoderma. 2008. V. 146. P. 102–113.
  34. Grishin S.Yu. The boreal forests of north-eastern Eurasia // Vegetatio. 1995. V. 121. P. 11–21.
  35. Guisan A., Zimmermann N.E. Predictive habitat distribution models in ecology // Ecological Modelling. 2000. V. 135. № 2–3. P. 147–186.
  36. Hawkins B.A., Rodríguez M.Á., Weller S.G. Global angiosperm family richness revisited: linking ecology and evolution to climate // J. Biogeography. 2011. V. 38. P. 1253–1266.
  37. Hijmans R.J., Cameron S.E., Parra J.L., Jones P.J., Jarvis A. Very high resolution interpolated climate surfaces for global land areas // Int. J. Climatology. 2005. V. 25. № 15. P. 1965–1978.
  38. Hjort J., Marmion M. Effects of sample size on the accuracy of geomorphological models // Geomorphology. 2008. V. 102. P. 341–350.
  39. Hosmer D.W., Lemeshow S. Applied Logistic Regression. N.Y.: John Wiley & Sons, Inc., 2000. 375 p.
  40. Hwang T., Song C., Vose J.M., Band L.E. Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index // Landscape Ecology. 2011. V. 26. P. 541–556.
  41. King D., Bourennane H., Isampert M., Macaire J.J. Relationship of the presence of a non-calcareous clay-loam horizon to DEM attributes in a gently sloping area // Geoderma. 1999. V. 89. № 1–2. P. 95–111.
  42. Krestov P.V., Omelko A.M., Nakamura Y. Phytogeography of higher units of forests and krummholz in North Asia and formation of vegetation complex in the Holocene // Phytocoenologia. 2010. V. 40. P. 41–56.
  43. Lim K., Treitz P., Wulder M., St-Onge B., Flood M. LiDAR remote sensing of forest structure // Progress in Physical Geography. 2003. V. 27. P. 88–106.
  44. Lischke H., Guisan A., Fischlin A., Bugmann H. Vegetation responses to climate change in the Alps - Modeling studies // A View from the Alps: Regional Perspectives on Climate Change. Boston: MIT Press, 1998. Ch. 6. P. 309–350.
  45. Lutz J.A., van Wagtendonk J.W., Franklin J.F. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park // J. Biogeography. 2010. V. 37. P. 936–950.
  46. MacMillan R.A., Shary P.A. Landforms and landform elements in geomorphometry // Geomorphometry: Concepts, Software, Applications. Developments in Soil Science. V. 33. Amsterdam: Elsevier, 2009. Ch. 9. P. 227–254.
  47. Martz L.W., de Jong E. CATCH: a Fortran program for measuring catchment area from digital elevation models // Computers and Geosciences. 1988. V. 14. № 5. P. 627–640.
  48. McBratney A.B., Odeh I.O.A., Bishop T.F.A., Dunbar M.S., Shatar T.M. An overview of pedometric techniques for use in soil survey // Geoderma. 2000. V. 97. № 3–4. P. 293–327.
  49. McBratney A.B., Mendonça Santos M.L., Minasny B. On digital soil mapping // Geoderma. 2003. V. 117. № 1–2. P. 3–52.
  50. McKenzie N.J., Ryan P.J. Spatial prediction of soil properties using environmental correlation // Geoderma. 1999. V. 89. № 1–2. P. 67–94.
  51. Mitašová H., Hofierka J. Interpolation by regularized spline with tension. II. Application to terrain modeling and surface geometry analysis // Mathematical Geology. 1993. V. 25. № 6. P. 657–669.
  52. Montgomery D.C., Peck E.A. Introduction to Linear Regression Analysis. N.Y.: John Wiley & Sons, 1982. 504 p.
  53. Moser D., Dullinger S., Englisch T., Niklfeld H., Plutzar C., Sauberer N., Zechmeister H.G., Grabherr G. Environmental determinants of vascular plant species richness in the Austrian Alps // J. Biogeography. 2005. V. 32. P. 1117–1127.
  54. Pike R.J., Evans I.S., Hengl T. Geomorphometry: a brief guide // Geomorphometry: Concepts, Software, Applications. Developments in Soil Science. V. 33. Amsterdam: Elsevier, 2009. Ch. 1. P. 3–30.
  55. Pierce K.B. Jr., Lookingbill T., Urban D. A simple method for estimating potential relative radiation (PRR) for landscape-scale vegetation analysis // Landscape Ecology. 2005. V. 20. № 2. P. 137–147.
  56. Scull P., Franklin J., Chadwick O.A., McArthur D. Predictive soil mapping: a review // Progress in Physical Geography. 2003. V. 27. № 2. P. 171–197.
  57. Shary P.A. Land surface in gravity points classification by a complete system of curvatures // Mathematical Geology. 1995. V. 27. № 3. P. 373–390.
  58. Shary P.A., Sharaya L.S., Mitusov A.V. Fundamental quantitative methods of land surface analysis // Geoderma. 2002. V. 107. № 1–2. P. 1–32.
  59. Shary P.A., Sharaya L.S., Rukhovich O.V. Model-based forecasting winter wheat yields using landscape and climate data // Landscape Modelling and Decision Support. Switzerland: Springer Nature Switzerland AG, 2020. Ch. 20. P. 383–396.
  60. Stephenson N.L. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales // J. Biogeography. 1998. V. 25. P. 855–870.
  61. Thomas A.L., King D., Dambrine E., Couturier A., Roque J. Predicting soil classes with parameters derived from relief and geologic materials in a sandstone region of the Vosges mountains (Northeastern France) // Geoderma. 1999. V. 90. № 3–4. P. 291–305.
  62. Thompson J.A., Bell J.C., Butler C.A. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling // Geoderma. 2001. V. 100. P. 67–89.
  63. Thornthwaite C.W. An approach toward a rational classification of climate // Geographical Review. 1948. V. 38. № 1. P. 55–94.
  64. Troeh F.R. Landform parameters correlated to soil drainage // Soil Science Society of America Proceedings. 1964. V. 28. № 6. P. 808–812.
  65. Viscarra Rossel R.A., Bui E.N. A new detailed map of total phosphorus stocks in Australian soil // Science of the Total Environment. 2016. V. 542. P. 1040–1049.
  66. Viscarra Rossel R.A., Brus D.J., Lobsey C., Shi Z., McLachlan G. Baseline estimates of soil organic carbon by proximal sensing: Comparing design-based, model-assisted and model-based inference // Geoderma. 2016. V. 265. P. 152–163.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (430KB)
3.

Download (558KB)
4.

Download (320KB)
5.

Download (1MB)
6.

Download (1MB)
7.

Download (1MB)

Copyright (c) 2023 П.А. Шарый

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies