Soil-Agrochemical Aspects of Remediation of Nickel-Contaminated Soil Using Growth-Promoting Rhizosphere Bacteria

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In pot experiments, the effect of introducing rhizospheric bacteria promoting plant growth on the yield and chemical composition of spring wheat when grown in humus horizon of the Luvic Retic Greyzemic Phaeozems (Loamic) soil artificially contaminated with a water-soluble nickel compound was studied. Application of P. fluorescens 20, P. fluorescens 21, and P. putida 23 bacteria increased plant resistance to elevated nickel concentration and increased yields, significantly reducing or completely eliminating heavy metal phytotoxicity. The resistance of plants to impact of nickel stress when using bacteria is due to: a) stimulation of root growth and an increase in the accumulation of nickel in the root system, b) improvement in the mineral nutrition of plants – an increase in uptake of biophilic elements from contaminated soil due to an increase in yield, in general, without significant changes in the content of the most elements in plants, including grain. Application of bacteria increased uptake of nickel from the soil by above-ground organs of plants, thereby enhancing phytoextraction – purification from heavy metal and, consequently, soil remediation. The distribution of nickel in soil in fractions isolated by the method of consecutive selective extractions has been established. In the first half of the growing season, application of bacteria increased the content of nickel in the soil, mainly in the exchangeable and specifically sorbed fractions and, to a lesser extent, in fractions associated with organic matter and ferruginous minerals, and decreased content of the metal in the residual fraction. Increase of nickel accumulation in plants in application of bacteria corresponded to increased heavy metal content in soil, mainly in the composition of compounds associated with exchangeable and specifically bound fractions. At full maturity of plants, no significant changes were found in fractional composition of Ni in the soil. Application of bacteria can be recommended in the development of strategies for remediation of nickel-contaminated soils based on environmentally friendly technologies.

About the authors

V. P. Shabayev

Institute of Physicochemical and Biological Problems in Soil Science RAS

Author for correspondence.
Email: vpsh@rambler.ru
Russia, 142290, Pushchino

V. E. Ostroumov

Institute of Physicochemical and Biological Problems in Soil Science RAS

Email: vpsh@rambler.ru
Russia, 142290, Pushchino

References

  1. Анохина Т.О., Сиунова Т.В., Сизова О.И., Захарченко Н.С., Кочетков В.В. Ризосферные бактерии рода Pseudomonas в современных агробиотехнологиях // Агрохимия. 2018. № 10. С. 54–66. https://doi.org/10.1134/S0002188118100034
  2. Водяницкий Ю.Н. Загрязнение почв тяжелыми металлами и металлоидами и их экологическая опасность (аналитический обзор) // Почвоведение. 2013. № 7. С. 872–881. https://doi.org/10.7868/S0032180X130501171
  3. Ладонин Д.В., Карпухин М.М. Фракционный состав соединений никеля, меди, цинка и свинца, загрязненных оксидами и растворимыми солями металлов // Почвоведение. 2011. № 8. С. 953–965.
  4. Ладонин Д.В. Фракционный состав тяжелых металлов в почвах, загрязненных оксидами и легкорастворимыми солями в модельном эксперименте // Формы соединений тяжелых металлов в техногенно-загрязненных почвах. М.: Изд-во Моск. ун-та, 2019. 312 с.
  5. Серегин И.В., Кожевникова А.Д. Физиологическая роль никеля и его токсическое действие на высшие растения // Физиология растений. 2006. Т. 53. № 2. С. 285–308.
  6. Соколова М.Г., Белоголова Г.А., Гордеева О.Н., Акимова Г.П. Влияние ризосферных бактерий на рост растений и накопление ими тяжелых металлов на техногенно загрязненных почвах // Агрохимия. 2014. № 2. С. 73–80.
  7. Теория и практика химического анализа почв / Под ред. Л.А. Воробьевой. М.: ГЕОС, 2006. 400 с.
  8. Титов А.Ф., Казнина Н.М., Таланова В.В. Тяжелые металлы и растения. Петрозаводск: Карельский НЦ РАН. Ин-т биологии, 2014. 194 с.
  9. Шабаев В.П. Микробиологическая азотфиксация и рост растений при внесении ризосферных микроорганизмов и минеральных удобрений // Почвенные процессы и пространственно-временная организация почв. М.: Наука, 2006. С. 195–211.
  10. Шабаев В.П. Почвенно-агрохимические аспекты ремедиации загрязненной свинцом почвы при внесении стимулирующих рост растений ризосферных бактерий // Почвоведение. 2012. № 5. С. 601–611.
  11. Шабаев В.П., Бочарникова Е.А., Остроумов В.Е. Ремедиация загрязненной кадмием почвы при применении стимулирующих рост растений ризобактерий и природного цеолита // Почвоведение. 2020. № 6. С. 738–750. https://doi.org/10.31857/S0032180X20060118
  12. Ameen N., Amjad M., Murtaza B., Abbas G., Shahid M., Imran M., Naeem M A., Niazin N.K. Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. Review // Environ. Sci. Pollut. Res. Int. 2019. V. 26. № 11. P. 10496–10514. https://doi.org/10.1007/s11356-019-04540-4
  13. Backer R., Roken J.S., Ilangumaran G., Lamont J., Praslickova D., Ricci E., Subramanian S. Smith D.L. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Review article // Front. Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.01473
  14. Barman M., Datta S.P., Rattan R.K., Meena M.C. Chemical fractions and bioavailability of nickel in alluvial soils // Plant Soil Environ. 2015. V. 61. № 1. P. 17–22. https://doi.org/10.17221/613/2014-PSE
  15. Chandel A.K., Chen H., Sharma H.Ch., Adhikari K., Gao B. Beneficial Microbes for Sustainable Agriculture // Microbes for Sustainable Development and Bioremediation. Raton: CRC Press, 2020. 386 p. https://doi.org/10.1201/9780429275876
  16. Dorjey S., Dolkar D., Sharma R. Plant growth promoting rhizobacteria Pseudomonas: A review // Int. J. Curr. Microbiol. Appl. Sci. 2017. V. 6. № 7. P. 1335–1344. https://doi.org/10.20546/ijcmas.2017.607.160
  17. Farwell A.J., Vesely S., Nero V., Rodrigues H., McCormack K., Shah S., Dixon D.G., Glick B.R. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site // Environ. Pollut. 2007. V. 147. № 3. P. 540–545.https://doi.org/10.1016/j.envpol. 2006.10.014
  18. Farwell A.J., Vesely S., Nero V., Rodriguez H., Shan S., Dixon D.G., Glick B.R. The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site // Plant Soil. 2006. V. 288. № 1–2. P. 309–318. https://doi.org/10.1007/s11104-006-9119-y
  19. Gupta G., Parihar S.S., Ahirwar N.K., Snehi S.K., Singh V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture // J. Microb. Biochem. Technol. 2015. V. 7. № 2. P. 96–102. https://doi.org/10.4172/1948-5948.1000188
  20. Handsa A., Kumar V., Anshumali A., Usmani Z. Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective // Recent Res. Sci. Technol. 2014. V. 6. № 1. P. 131–134. http://recent-science.com/
  21. Hassan M.U., Chattha M.U., Khan I., Chattha M.B., Aamer M., Nawaz M., Ali. A., Khan M.A.U., Khan T.A. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities – a review // Environ. Sci. Pollut. Res. 2019. V. 26. № 13. P. 12673–12688. https://doi.org/10.1007/s11356-019-04892-x
  22. Jakubus M., Graczyk M. Availability of nickel in soil evaluated by various chemical extractants and plant accumulation // Agronomy. 2020. V. 10. № 11. 1805. https://doi.org/10.3390/agronomy10111805
  23. Kalita M., Bharadwaz M., Dey T., Gogoi K., Dowarah P., Unni B.G., Ozah D., Saikia I. Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops // Ind. J. Exp. Biol. 2015. V. 53. № 1. P. 56–60.
  24. Ma Y., Rajkumar M., Freitas H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp // Chemosphere. 2009. V. 75. № 6. P. 719–725. https://doi.org/10.1016/j.chemosphere.2009.01.056
  25. Ma Y., Rajkumar M., Luo Y., Freitas H. Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake // J. Hazard. Mater. 2011. V. 195. P. 230–237. https://doi.org/10.1016/j.jhazmat.2011.08.034
  26. Microbes for Sustainable Development and Bioremediation / Eds. R. Chandra, R.C. Sobti. Boca Raton: CRC Press, 2020. 386 p. https://doi.org/10.1201/9780429275876
  27. Mishra J., Singh R., Arora N.K. Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Mini review article. // Front. Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.01706
  28. Mishra I, Fatima T., Egamberdieva D., Arora N.K. Novel bioformulations developed from Pseudomonas putida BSP9 and its biosurfactant for growth promotion of Brassica juncea (L.) // Plants (Basel). 2020. V. 9. № 10. 1349. https://doi.org/10.3390/plants9101349
  29. Mitra D., Anđjelković S., Panneerselvam P., Chauham M., Senapati A., Vasić T., Ganeshamurthy A.N., Verma D., Arya P., Radha T.K., Jain D. Review paper: Plant growth promoting microorganisms helping in sustainable agriculture: current perspectives // Int. J. Agr. Sci. Vet. Med. 2019. V. 7. № 2. P. 50–74.
  30. Pattnaik S., Mohapatra B., Gupta A. Plant growth-promoting microbe mediated uptake of essential nutrients (Fe, P, K) for crop stress management: microbe–soil–plant continuum. Review // Front. Agron. 2021. https://doi.org/10.3389/fagro.2021.689972
  31. Rajkumar M., Freitas H. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard // Bioresour. Technol. 2008. V. 99. № 9. P. 3491–3498. https://doi.org/10.1016/j.biortech.2007.07.046
  32. Seraj F., Rahman T. Heavy metals, metalloids, their toxic effect and living systems // Am. J. Plant Sci. 2018. V. 9. № 13. P. 2626–2643.https://doi.org/10.4236/ajps 2018.913191
  33. Tank N., Saraf M. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR // J. Basic Microbiol. 2009. V. 49. № 2. P. 195–204. https://doi.org/10.1002/jobm.200800090
  34. Ullah, A., Heng S., Munis M.F.H., Fahad S., Yang X. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review // Environ. Exp. Bot. 2015. V. 117. P. 28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001
  35. Wang Y., Wang S., Nan Z., Ma J., Zang F., Chen Y., Li Y., Zhang Q. Effects of Ni on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China // Environ. Sci. Pollut. Res. Int. 2015. V. 22. № 24. P. 19756–19763. https://doi.org/10.1007/s11356-015-5153-8
  36. Zawadzka A.M., Paszczynski A.J., Crawford R.L. Transformations of toxic metals and metalloids by Pseudomonas stutzeri strain KC and its siderophore pyridine-2,6-bis (thiocarboxylic acid) // Advances in Applied Bioremediation (Soil Biology 17). Berlin: Springer-Verlag. 2009. P. 221–238. https://doi.org/10.1007/978-3-540-89621-0_12

Copyright (c) 2023 В.П. Шабаев, В.Е. Остроумов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies