Cyanobacteria and Algae in Biological Soil Crusts of Frost Boils in the Mountain Tundra of the Urals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Diversity of cyanobacteria and eukaryotic algae was recovered from biological soil crusts formed on bare spots in tundras of the Ural mountains. The research was carried out in two typical tundra types, dominated by shrub-moss-lichen and dwarf birch-lichen-moss communities. In total, 46 species belonging to five divisions were identified: Cyanobacteria (19), Ochrophyta (1), Bacillariophyta (2), Chlorophyta (22), Charophyta (2). Core species of the biological crusts come from Cyanobacteria (Stigonema minutum, Gloeocapsopsis magma, Schizothrix fuscescens, Dasygloea cf. lamyi, Fischerella muscicola, Nostoc commune, Scytonema hofmannii) and Chlorophyta (Sporotetras polydermatica, Coccomyxa simplex, Elliptochloris bilobata, E. subsphaerica, Lobochlamys culleus, Pleurastrum terricola). The low diversity of algae and cyanobacteria results from harsh environmental conditions of their habitat: extreme fluctuation of upper ground temperatures, acidic soils with low base content, and reduced levels of nitrogen, phosphorus and other crucial biogenic elements. The total number of cyanobacterial and algal cells per g of soil was estimated at 0.03 to 34.19 million. Based on the acetylene reduction method, the average nitrogen fixation rates in biological crusts ranged from 0.009 to 0.015 mg С2Н4 m–2h–1. The activity varied between soil crust types from 1.48 to 2.25 mg С2Н4 m–2h–1. In future, regular observations are planned on the studied sites to reconstruct and predict succession processes in cryogenic landscapes under mountain tundra conditions.

About the authors

E. N. Patova

Institute of Biology FRC Komi SC UB RAS

Author for correspondence.
Email: patova@ib.komisc.ru
Russia, 167982, Syktyvkar

I. V. Novakovskaya

Institute of Biology FRC Komi SC UB RAS

Email: patova@ib.komisc.ru
Russia, 167982, Syktyvkar

M. D. Sivkov

Institute of Biology FRC Komi SC UB RAS

Email: patova@ib.komisc.ru
Russia, 167982, Syktyvkar

References

  1. Андреева В.М. Почвенные и аэрофильные зеленые водоросли (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). СПб.: Наука, 1998. 352 с.
  2. Атлас Коми Автономной Советской Социалистической Республики / Под ред. С.В. Колесника. М.: ГУГК, 1964. 112 с.
  3. Биоразнообразие водных и наземных экосистем бассейна реки Кожым (северная часть национального парка “Югыд ва”) / Под ред. Е.Н. Патовой. Сыктывкар: Коми НЦ УрО РАН, 2010. 192 с.
  4. Гаранкина Е.В. Эволюция криогенного микрорельефа низкогорий субарктики // Криосфера Земли. 2013. Т. XVII. № 3. С. 3–16.
  5. Матвеева Н.В., Заноха Л.Л., Афонина О.М., Потемкин А.Д., Патова Е.Н., Давыдов Д.А., Андреева В.М. и др. Растения и грибы полярных пустынь Северного полушария. СПб.: Марафон, 2015. 317 с.
  6. Новаковская И.В., Патова Е.Н., Кулюгина Е.Е. Изменение разнообразия цианопрокариот и водорослей при зарастании пятен-медальонов горно-тундровых сообществ Северного Урала // Бот. журн. 2019. Т. 104. № 4. С. 569–586. https://doi.org/10.1134/S0006813619040057
  7. Патова Е.Н., Новаковская И.В. Почвенные водоросли северо-востока европейской части России // Новости систематики низших растений. 2018. Т. 52. С. 311–353. https://doi.org/10.31111/nsnr/2018.52.2.311
  8. Патова Е.Н., Новаковская И.В., Денева С.В. Влияние эдафических и орографических факторов на разнообразие водорослевых сообществ биологических почвенных корочек на пятнах-медальонах Полярного и Приполярного Урала // Почвоведение. 2018. № 3. С. 1–13. https://doi.org/10.7868/S0032180X1803006
  9. Патова Е.Н., Новаковская И.В., Сивков М.Д., Новаковский А.Б. Влияние экологических факторов на формирование альгогруппировок горно-тундровых почв (Приполярный Урал) // Теоретическая и прикладная экология. 2012. № 2. С. 89–98.
  10. Перминова Г.Н., Кабиров Р.Р., Киприянов ВМ. Водоросли как продуценты тундровых биогеоценозов // Споровые растения тундровых биогеоценозов. Тр. Коми филиала АН ССР. 1982. № 49. С. 81–94.
  11. Ройзин М.Б. Микрофлора скал и примитивных почв высокогорной арктической пустыни // Бот. журн. 1960. Т. 45. № 7. С. 997–1007.
  12. Сдобникова Н.В. Почвенные водоросли в южных тундрах Таймыра // Южные тундры Таймыра. Л.: Наука, 1986. С. 68–79.
  13. Старцев В.В., Дубровский Ю.А., Жангуров Е.В., Дымов А.А. Пространственная неоднородность свойств почв в зоне распространения островной мерзлоты (Приполярный Урал) // Вестн. Том. гос. ун-та. Биология. 2019. № 48. С. 32–55. https://doi.org/10.17223/19988591/48/2
  14. Хазиев Ф.Х., Кабиров Р.Р. Количественные методы почвенно-альгологических исследований. Уфа: БФАН СССР, 1986. 172 с.
  15. Штина Э.А., Голлербах М.М. Экология почвенных водорослей М.: Наука, 1976. 144 с.
  16. Штина Э.А., Онипченко В.Г., Разран Л.М. Почвенные водоросли высокогорных фитоценозов Тебердинского заповедника (Северо-Западный Кавказ) // Альгология. 1995. Т. 5. № 1. С. 17–28.
  17. Andersen R.A. Algal Culturing Techniques. N.Y., 2005. 589 p.
  18. Belnap J., Lange O.L. Biological Soil Crusts: Structure, Function, and Management // Ecological Studies. V. 150. Berlin: Springer-Verlag, 2003. 503 p.
  19. Borchhardt N., Baum C., Mikhailyuk T., Karsten U. Biological Soil Crusts of Arctic Svalbard – Water Availability as Potential Controlling Factor for Microalgal Biodiversity // Front. Microbiol. 2017. V. 8 P. 1–12. https://doi.org/10.3389/fmicb.2017.01485
  20. Borchhardt N., Schiefelbein U., Abarca N., Boy J., Mikhailyuk T., Sipman H.J.M., Karsten U. Diversity of algae and lichens in biological soil crusts of Ardley and King George islands, Antarctica // Antarctic Science. 2017. V. 29. P. 229–237. https://doi.org/10.1017/S0954102016000638
  21. Büdel B., Colesie C., Green T.A., Grube M., Suau R.L., Loewen-Schneider K., Maier S., Peer T., Pintado A., Raggio J., Ruprecht U. Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN) // Biodiversity and Conservation. 2014. V. 23. P. 1639–1658.
  22. Büdel B., Dulić T., Darienko T., Rybalka N., Friedl T. Cyanobacteria and Algae of Biological Soil Crusts // Photosynthetic Adaptation. V. 226. Cham: Springer International Publishing. 2016. P. 55–80.
  23. Davydov D. Cyanobacterial Diversity of the Northern Polar Ural Mountains. Diversity. 2021. V. 13. P. 607. https://doi.org/10.3390/d13110607
  24. Davydov D., Patova E. The diversity of Cyanoprokaryota from freshwater and terrestrial habitats in the Eurasian Arctic and Hypoarctic // Hydrobiologia. 2018. V. 811. P. 119–137. https://doi.org/10.1007/s10750-017-3400-3
  25. Deng S., Zhang D., Wang G., Zhou X., Ye C., Fu T., Ke T., Zhang Y., Liu Y., Chen L. Biological soil crust succession in deserts through a 59-year-long case study in China: How induced biological soil crust strategy accelerates desertification reversal from decades to years // Soil Biol. Biochem. 2020. V. 141. P. 107665.
  26. Ettl H., Gartner G. Syllabus der Boden-, Luft-und Flechtenalgen 2. Auflage, 2014. 773 p.
  27. Fritz-Sheridan R.P. Physiological Ecology of nitrogen fixing blue-green algal grusts in the upper-subalpine life zone // J. Phycol. 1988. V. 24. P. 302–309.
  28. Guiry M.D., Guiry G.M. AlgaeBase. World-wide electronic publication. National University of Ireland. Galway, 2022. http://www.algaebase.org
  29. Karsten U., Holzinger A. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration // Biodiversity and Conservation. 2014. V. 23. P. 1845–1858. https://doi.org/10.1007/s10531-014-0653-2
  30. Komárek J. Cyanoprokaryota III: Nostocales, Stigonematales // Süßwasserflora von Mitteleuropa. Berlin, 2013. V. 19/3. 1130 p.
  31. Komárek J., Anagnostidis K. Cyanoprokaryota I. Teil: Chroococcales // Süßwasserflora von Mitteleuropa. Heidelberg, Berlin, 1998. V. 19/1. 548 p.
  32. Komárek J., Anagnostidis K. Cyanoprokaryota II. Teil: Oscillatoriales // Süβwasserf lora von Mitteleuropa. München, 2005. V. 19/2. 643 p.
  33. Lennihan R., Chapin D.M., Dickson L.G. Nitrogen fixation and photosynthesis in high arctic forms of Nostoc commune // Can. J. Botan. 1994. V. 72. P. 940–945.
  34. Liengen T. Environmental factors influencing the nitrogen fixation activity of freeliving terrestrial cyanobacteria from a high arctic area, Spitsbergen // Can. J. Microbiol. 1999. V. 45. P. 573–581.
  35. Matuła J., Pietryka M., Richter D., Wojtun B. Cyanoprokaryota and algae of Arctic terrestrial ecosystemsin the Hornsund area, Spitsbergen // Polish Polar Res. 2007. V. 28. P. 283–315.
  36. Novakovskaya I.V., Dubrovskiy Y.A., Patova E.N., Novakovskiy A.B., Sterlyagova I.N. Influence of ecological factors on soil algae in different types of mountain tundra and sparse forests in the Northern Urals // Phycologia. 2020. V. 59. P. 320–329. https://doi.org/10.1080/00318884.2020.1754736
  37. Novakovskaya I.V., Patova E.N., Dubrovskiy Y.A., Novakovskiy A.B., Kulyugina E.E. Distribution algae and cyanobacteria of biological soil crusts along the elevation gradient in mountain plant communities at the Northern Urals (Russian European Northeast) // J. Mountain Sci. 2022. V. 19. P. 637–646. https://doi.org/10.1007/s11629-021-6952-7
  38. Patil A., Lamnganbi M. Impact of climate change on soil health: A review // Int. J. Chem. Studies. 2018. V. 6. P. 2399–2404.
  39. Patova E., Sivkov M., Patova A. Nitrogen fixation activity in biological soil crusts dominated by cyanobacteria in the subpolar Urals (European North–East Russia) // FEMS Microbiology Ecology. 2016. V. 9. P. 1–9. https://doi.org/10.1093/femsec/fiw131
  40. Pietryka M., Richter D., Matuła J. Arctic ecosystems-relations between cyanobacterial assemblages and vegetation (Spitsbergen) // Ecol. Questions. 2018. V. 29. P. 9–20. https://doi.org/10.12775/EQ.2018.001
  41. Pushkareva E., Johansen J.R., Elster J. A review of the ecology, ecophysiology, and biodiversity of microalgae in Arctic soil crusts // Polar Biology. 2016. V. 39. P. 2227–2240. https://doi.org/10.1007/s00300-016-1902-5
  42. Pushkareva E., Wilmotte A., Láska K., Elster J. Comparison of Microphototrophic Communities Living in Different Soil Environments in the High Arctic // Front. Ecol. Evol. 2019. V. 7. 00393. https://doi.org/10.3389/fevo.2019.00393
  43. Řeháková K., Chlumská Z., Doležal J. Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation // Microbial Ecology. 2011. V. 62. P. 337–346. https://doi.org/10.1007/s00248-011-9878-8
  44. Rogora M., Frate L., Carranza M.L., Freppaz M., Stanisci A., Bertani I., Bottarin R. et al. Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines // Sci. Total Environ. 2018. V. 624. P. 1429–1442.
  45. Rousk K., Sorensen P.L., Michelsen A. What drives biological nitrogen fixation in high arctic tundra: Moisture or temperature? // Ecosphere. 2018. V. 9. P. e02117.40.
  46. Sørensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons // Biol. Skr. K. Danske Vidensk. Selsk. 1948. V. 5. P. 1–34.
  47. Starmach K. Metody badania planktonu. Warszawa: PWN, 1955. 135 p.
  48. Stewart K.J., Lamb E.G. Coxson D.S., Siciliano S.D. Bryophyte cyanobacterial associations as key factor in N2-fixation across the Canadian Arctic // Plant Soil. 2011. V. 344. P. 335–346. https://doi.org/10.1007/s11104-011-0750-x
  49. Stewart W.D., Fitgeral G.P., Burris R.H. In situ studies on N2 fixation using the acetylene reduction technique // Proceed. N. Acad Sci USA. 1967. V. 58. P. 2071–2078.
  50. Weber B., Belnap J., Büdel B., Antoninka A.J., Barger N.N., Chaudhary V.B. et al. What is a biocrust? A refined, contemporary definition for a broadening research community // Biological Rev. 2022. https://doi.org/10.1111/brv.12862
  51. Yoshitake S., Uchida M., Koizumi H., Kanda H., Nakatsubo T. Production of biological soil crusts in the early stage of primary succession on a High Arctic glacier foreland // New Phytologist. 2010. V. 186. P. 451–460. https://doi.org/10.1111/j.1469-8137.2010.03180.x
  52. Zielke M., Solheim B., Spjelkavik S., Olsen R.A. Nitrogen fixation in the high arctic: role of vegetation and environmental conditions // Arctic, Antarctic, Alpine Res. 2005. V. 37. P. 372–378. https://doi.org/10.1657/1523-0430(2005)037[0372: NFITHA]2.0.CO;2

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (4MB)
3.

Download (116KB)
4.

Download (158KB)
5.

Download (234KB)
6.

Download (118KB)
7.

Download (520KB)
8.

Download (3MB)

Copyright (c) 2023 Е.Н. Патова, И.В. Новаковская, М.Д. Сивков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies