Stability of Arable Soil Aggregates: Experimental Determination and Normative Characteristics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Soil stability in modern soil physics is divided into two directions: water stability and resistance to mechanical influences (compression, wedging). Both soil properties in water-saturated soil are based on the rupture of intra-aggregate interparticle bonds, however, no standard physically justified values have been proposed to characterize the stability of aggregates. The purpose of the article is to substantiate the physical concept of stability of soil aggregates and to propose a single methodological method for quantifying stability as a normative soil characteristic. A high-performance method has been developed based on the dissection of linearly arranged water-saturated aggregates using blades under controlled load. The main stages of the technique are vacuuming of aggregates to eliminate the uncontrolled influence of trapped air, saturation of aggregates in vacuum with water and subsequent determination of the aggregates stability to penetration of blades. Experimental stability values (mN/aggregate) were obtained for 17 soils, which made it possible to form normative ranges for mountainous arable heavy loamy soils: sod-podzolic – 17–19, gray forest –27–29, chernozems – 34–37 mN/agr and a number of other soils, which makes it possible to apply the obtained value as a soil characteristic of the stability of aggregates. The possibility of using the stability values as a methodological basis for monitoring soil stability and degradation, quantitative directions for assessing the state of physical characteristics of soil aggregates (first their main parameter, their stability) is discussed. Taking into account the highly correlative dependence of the proposed stability characteristic on the water stability values obtained by the Savvinov method (>85%) and the high performance of the stability determination method (the proposed method is about 20 times more productive than the Savvinov method), the possibilities of using the method and the obtained values of the stability of aggregates as a general physical characteristic and a separate well for quantifying water stability are discussed.

About the authors

D. A. Ushkova

Faculty of Soil Science of Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russia, 119991, Moscow, Leninskie Gory

U. A. Konkina

Faculty of Soil Science of Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russia, 119991, Moscow, Leninskie Gory

I. V. Gorepekin

Faculty of Soil Science of Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russia, 119991, Moscow, Leninskie Gory

D. I. Potapov

Faculty of Soil Science of Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russia, 119991, Moscow, Leninskie Gory

E. V. Shein

Faculty of Soil Science of Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russia, 119991, Moscow, Leninskie Gory

G. N. Fedotov

Faculty of Soil Science of Lomonosov Moscow State University

Author for correspondence.
Email: gennadiy.fedotov@gmail.com
Russia, 119991, Moscow, Leninskie Gory

References

  1. Альтшуллер Г.С. Найти идею. Введение в теорию решения изобретательских задач. Новосибирск: Наука, 1986. 209 с.
  2. Антипов-Каратаев И.Н., Келлерман В.В., Хан Д.В. О почвенном агрегате и методах его исследования. М.–Л.: Изд-во АН СССР, 1948.
  3. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.
  4. Вершинин П.В. Почвенная структура и условия ее формирования М.: Изд-во АН СССР, 1958. 188 с.
  5. Милановский Е.Ю. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС, 2009. 186 с.
  6. Николаева Е.И. Устойчивость почвенных агрегатов к водным и механическим воздействиям. Дис. … канд. биол. наук. М., 2016. 104 с.
  7. Потапов Д.И., Ушкова Д.А., Горепекин И.В., Федотов Г.Н., Батырев Ю.П., Шалаев В.С. О влиянии амплитуды вибрации на разрушение почвенных агрегатов при определении их водоустойчивости при ситовом анализе // Лесной вестник. 2022. № 2. С. 44–49. https://doi.org/10.18698/2542-1468-2022-2-44-49
  8. Ревут И.Б. Физика почв. Л.: Колос, 1972. 368 с.
  9. Федотов Г.Н., Добровольский Г.В. Возможные пути формирования наноструктуры в почвенных гелях // Почвоведение. 2012. № 8. С. 908–920.
  10. Фрид А.С., Кузнецова И.В., Кололева И.Е., Бондарев А.Г., Когут Б.М., Уткаева В.Ф., Азовцева Н.А. Зонально-провинциальные нормативы изменений агрохимических, физико-химических, физических показателей основных пахотных почв европейской территории России при антропогенных воздействиях. М.: Почв. ин-т им. В.В. Докучаева, 2010. 176 с.
  11. Хан К.Ю. Энергетическая характеристика водоустойчивости почвенных агрегатов. Дис. … докт. биол. наук. Пущино, 2012. 300 с.
  12. Шеин Е.В. Курс физики почв. М.: Изд-во Моск. ун-та, 2005. 432 с.
  13. Шеин Е.В., Милановский Е.Ю. Роль и значение органического вещества в образовании и устойчивости почвенных агрегатов // Почвоведение. 2003. № 1. С. 53–61.
  14. Шеин Е.В., Русанов А.М., Николаева Е.И., Хайдапова Д.Д. Параметрическая оценка почвенно-физических функций // Вестник Моск. ун-та. Сер. 17, почвоведение. 2007. № 2. С. 47–52.
  15. Шеин Е.В., Русанов А.М., Милановский Е.Ю., Хайдапова Д.Д., Николаева Е.И. Математические модели некоторых почвенных характеристик: обоснование, анализ, особенности использования параметров моделей // Почвоведение. 2013. № 5. С. 595–602.
  16. Almajmaie A., Hardie M., Acuna T., Birch C. Evaluation of methods for determining soil aggregate stability // Soil Till. Res. 2017. V. 167. P. 39–45. https://doi.org/10.1016/j.still.2016.11.003
  17. Amezketa E., Singer M.J., Le Bissonnais Y. Testing a new procedure for measuring water-stable aggregation // Soil Sci. Soc. Am. J. 1996. V. 60. № 3. P. 888–894. https://doi.org/10.2136/sssaj1996.03615995006000030030x
  18. Cerdà A. Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia // Soil Till. Res. 2000. V. 57. № 3. P. 159–166. https://doi.org/10.1016/S0167-1987(00)00155-0
  19. Ghezelbash E., Hossein Mohammadi M., Shorafa M. Investigation of Soil Mechanical Resistance Threshold Values for Two Wheat Cultivars in a Loamy Sand Soil // J. Soil Sci. Plant Nutrition. 2022. P. 1–12. https://doi.org/10.1007/s42729-022-00864-2
  20. Haynes R.J., Swift R.S. Stability of soil aggregates in relation to organic constituents and soil water content // J. Soil Sci. 1990. V. 41. № 1. P. 73–83. https://doi.org/10.1111/j.1365-2389.1990.tb00046.x
  21. Le Bissonnais Y. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology // Eur. J. Soil Sci. 1996. V. 47. № 4. P. 425–437. https://doi.org/10.1111/j.1365-2389.1996.tb01843.x
  22. Lu G., Sakagami K.I., Tanaka H., Hamada R. Role of soil organic matter in stabilization of water-stable aggregates in soils under different types of land use // Soil Sci. Plant Nutrition. 1998. V. 44. № 2. P. 147–155. https://doi.org/10.1080/00380768.1998.10414435
  23. Piccolo A. The supramolecular structure of humic substances // Soil Sci. 2001. V. 166. № 11. P. 810–832. https://doi.org/10.1097/00010694-200111000-00007
  24. Rowley M.C., Grand S., Verrecchia É.P. Calcium-mediated stabilisation of soil organic carbon // Biogeochemistry. 2018. T. 137. № 1. P. 27–49. https://doi.org/10.1007/s10533-017-0410-1
  25. Schjønning P., Lamandé M., Munkholm L.J., Lyngvig H.S., Nielsen J.A. Soil precompression stress, penetration resistance and crop yields in relation to differently-trafficked, temperate-region sandy loam soils // Soil Till. Res. 2016. V. 163. P. 298–308. https://doi.org/10.1016/j.still.2016.07.003
  26. Šimanský V., Jonczak J. Aluminium and iron oxides affect the soil structure in a long-term mineral fertilised soil // J. Soils Sediments. 2020. V. 20. № 4. P. 2008–2018. https://doi.org/10.1007/s11368-019-02556-4
  27. Vogelmann E.S., Reichert J.M., Prevedello J., Awe G.O., Mataix-Solera J. Can occurrence of soil hydrophobicity promote the increase of aggregates stability? // Catena. 2013. V. 110. P. 24–31. https://doi.org/10.1016/j.catena.2013.06.009
  28. Zavarzina A.G., Danchenko N.N., Kogut B.M. Humic substances: hypotheses and reality (a review) // Eurasian Soil Sci. 2021. V. 54. № 12. P. 1826–1854. https://doi.org/10.1134/S1064229321120164

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (125KB)
3.

Download (57KB)
4.

Download (633KB)

Copyright (c) 2023 Д.А. Ушкова, У.А. Конкина, И.В. Горепекин, Д.И. Потапов, Е.В. Шеин, Г.Н. Федотов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies