Qualitative Assessment of the Contribution of Various Components to Cu(II) Adsorption by Alluvial Soddy-Gley Soil

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the method of sequential removal of various types of sorption surfaces, a qualitative assessment of the contribution of organic matter, non-silicate iron compounds, and clay minerals to the adsorption of Cu(II) by alluvial soddy-gley soil was carried out under the conditions of laboratory equilibrium experiments. It has been established that the contribution of each of the components is determined both by the ability to form surface inner-sphere complexes at pH-dependent positions, and by the availability of sorption centers in the places of localization of a constant charge of clay minerals. In the AY horizon, the main components sorbing Cu(II) are organic matter and nonsilicate iron compounds, while in the ABg and BDg horizons, clay minerals make the main contribution to Cu(II) adsorption under the experimental conditions. The main mechanism of Cu(II) adsorption in the AY horizon is ion exchange with H+ on functional groups of organic matter and surface hydroxyls of nonsilicate iron compounds. In the underlying horizons, Cu(II) is mainly sorbed as a result of ion exchange with cations that compensate for the constant charge of the crystal lattices of clay minerals. Soil treatment with 10% H2O2 and the Mehra-Jackson reagent leads to a change in the surface area, quality and quantity of sorption centers, and to the transformation of the crystal lattices of clay minerals. These changes should be taken into account when assessing the contribution of soil components to the sorption of metal ions.

About the authors

M. I. Pyatova

Lomonosov Moscow State University

Email: itolp@soil.msu.ru
Russia, 119991, Moscow

I. I. Tolpeshta

Lomonosov Moscow State University

Author for correspondence.
Email: itolp@soil.msu.ru
Russia, 119991, Moscow

Yu. G. Izosimova

Lomonosov Moscow State University

Email: itolp@soil.msu.ru
Russia, 119991, Moscow

М. М. Karpukhin

Lomonosov Moscow State University

Email: itolp@soil.msu.ru
Russia, 119991, Moscow

N. Yu. Barsova

Lomonosov Moscow State University

Email: itolp@soil.msu.ru
Russia, 119991, Moscow

References

  1. Васильев Н.Г., Овчаренко Ф.Д. Химия поверхности кислых форм природных слоистых силикатов // Успехи химии. 1977. Т. XLVI. Вып. 8. С. 1488–1511.
  2. Воробьева Л.А. Химический анализ почв. М.: Изд-во Моск. ун-та, 1998. 272 с.
  3. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 343 с.
  4. Пампура Т.В., Пинский Д.Л., Остроумов В.Г., Гершевич В.Д., Башкин В.Н. Экспериментальное изучение буферности чернозема при загрязнении медью и цинком // Почвоведение. 1993. № 2. С. 104–111.
  5. Переломов Л.В., Пинский Д.Л. Формы Мп, РЬ и Zn в серых лесных почвах Среднерусской возвышенности // Почвоведение. 2003. № 6. 682–691.
  6. Пинский Д.Л. Современные представления о механизмах поглощения тяжелых металлов почвами // Эволюция, функционирование и экологическая роль почв как компонента биосферы. Пущино, 2020. С. 55–64.
  7. Пинский Д.Л., Минкина Т.М., Бауэр Т.В., Невидомская Д.Г., Шуваева В.А., Манджиева С.С., Цицуашвили В.С., Бурачевская М.В., Чаплыгин В.А., Барахов А.В., Велигжанин А.А., Светогоров Р.Д., Храмов Е.В., Иовчева А.Д. Идентификация соединений тяжелых металлов в техногенно преобразованных почвах методами последовательного фракционирования, XAFS-спектроскопии и XRD порошковой дифракции // Почвоведение. 2022. № 5. С. 600–614.
  8. Симонов Г.А. Содержание и минералогический состав коллоидной и предколлоидной фракций в зональном ряду почв Европейской России // Почвоведение. 2003. № 6. С. 722–732.
  9. Соколова Т.А., Дронова Т.Я., Толпешта И.И. Глинистые минералы в почвах. Тула, 2005. 336 с.
  10. Соколова Т.А., Толпешта И.И., Русакова Е.С., Максимова Ю.Г. Глинистые минералы в почвах пойм ручьев в ненарушенных ландшафтах южной тайги (на примере почв ЦЛГПБЗ) // Вестник Моск. ун-та. Сер. 17, почвоведение. 2013. № 4. С. 11–20.
  11. Соколова Т.А., Толпешта И.И., Русакова Е.С. Вклад отдельных реакций в формирование кислотно-основной буферности почв пойм ручьев (центрально-лесной государственный заповедник) // Почвоведение. 2016. № 4. С. 434–447.
  12. Соколова Т.А., Толпешта И.И., Изосимова Ю.Г., Умнова В.А., Лашуков П.В. Влияние обработок перекисью водорода и реактивом Мера и Джексона на дифракционные спектры илистых фракций. // Почвоведение. 2017. № 12. С. 1447–1456. https://doi.org/10.7868/S0032180X17120103
  13. Толпешта И.И., Соколова Т.А., Воробьева А.А., Изосимова Ю.Г. Трансформация триоктаэдрической слюды в верхнем минеральном горизонте подзолистой почвы по результатам двухлетнего полевого эксперимента // Почвоведение. 2018. № 7. С. 868–881. https://doi.org/10.1134/S0032180X18070134
  14. Borggaard O. Effect of Surface Area and Mineralogy of Iron Oxides on Their Surface Charge and Anion-Adsorption Properties // Clays and Clay Minerals. 1983. V. 31. № 3. P. 230–232.
  15. Boyd S.A., Sommers L.E., Nelson D.W., West D.X. Copper(II) binding by humic acid extracted from sewage sludge: an electron spin resonance study // Soil Sci. Soc. Am. J. 1983. V. 47. P. 43–46.
  16. Bradl H.B. Adsorption of heavy metal ions on soils and soils constituents // J. Colloid Interface Sci. 2004. V. 277. P. 1–18.
  17. Bray A.W., Oelkers E.H., Bonneville S., Wolff-Boennisch D., Potts N.J., Fones G., Benning L.G. The effect of pH, grain size, and organic ligands on biotite weathering rates // Geochim. Cosmochim. Acta. 2015. V. 164. P. 127–145. https://doi.org/10.1016/j.gca.2015.04.048
  18. Brewster G.R. Effect of chemical pretreatment on x-ray powder diffraction characteristics of clay minerals derived from volcanic ash // Clays and Clay Minerals. 1980. V. 28. № 4. P. 303–310.
  19. Cappelli C., Yokoyama S., Cama J., Huertas F.J. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation // Geochim. Cosmochim. Acta. 2018. V. 227. P. 96–122. https://doi.org/10.1016/j.gca.2018.01.039
  20. Christl I., Milne C.J., Kinniburgh D.G., Kretzschmar R. Relating Ion Binding by Fulvic and Humic Acids to Chemical Composition and Molecular Size. 2. Metal Binding // Environ. Sci. Technol. 2001. 35. P. 2512–2517.
  21. Fariña A.O., Peacock C.L., Fiol S., Antelo J., Carvin B. A universal adsorption behaviour for Cu uptake by iron (hydr)oxide organomineral composites // Chem. Geology. 2018. V. 479. P. 22–35. https://doi.org/10.1016/j.chemgeo.2017.12.022
  22. Feller C., Schouller E., Thomas F., Rouiller J., Herbillon A.J. N2-BET specific surface areas of some low activity clay soils and their relationships with secondary constituents and organic matter contents // Soil Science. 1992. V153. № 4. P. 293–299.
  23. González Costa J.J., Reigosa M.J., Matías J.M., Covelo E.F. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model // Sci. Total Environ. 2017. V. 593–594. P. 508–522. https://doi.org/10.1016/j.scitotenv.2017.03.195
  24. Hamer M., Graham R.C., Amrhein C., Bozhilov K.N. Dissolution of Ripidolite (Mg, Fe-Chlorite) in Organic and Inorganic Acid Solutions // Soil Sci. Soc. Am. J. 2003. V. 67. P. 654–661.
  25. Heidmann l., Christl I., Kretzschmar R. Sorption of Cu and Pb to kaolinite–fulvic acid colloids: Assessment of sorbent interactions // Geochim. Cosmochim. Acta. 2005. V. 69. № 7. P. 1675–1686. https://doi.org/10.1016/j.gca.2004.10.002
  26. Hizal J., Apak R. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid // J. Colloid Interface Sci. 2006. V. 295. P. 1–13.
  27. Kaiser K., Guggenberger G. Mineral surface and soil organic matter // Eur. J. Soil Sci. 2003. V. 54. P. 219–236.
  28. Ko I., Kim J.Y., Kim K.W. Adsorption properties of soil humic and fulvic acids by hematite // Chem. Speciation Bioavailability. 2005. V. 17(2). P. 41–48. https://doi.org/10.3184/095422905782774928
  29. Lanson B., Ferrage E., Hubert F., Prêt D., Mareschal L., Turpault M.P., Ranger J. Experimental aluminization of vermiculite interlayers: An X-ray diffraction perspective on crystal chemistry and structural mechanisms // Geoderma. 2015. V. 249–250. P. 28–39.
  30. Leifeld J., Kogel-Knabner I. Organic carbon and nitrogen in fine soil fractions after treatment with hydrogen peroxide // Soil Biol. Biochem. 2001. V. 33. P. 2155–2158.
  31. Leermakers M., Mbacho B.E., Husson A., Lagneau V., Descostes M. An alternative sequential extraction scheme for the determination of trace elements in ferrihydrite rich sediments // Talanta. 2019. V. 199. P. 80–88. https://doi.org/10.1016/j.talanta.2019.02.0531
  32. Li J., Weng L., Deng Y., Ma J., Chen Y., Li Y. NOM-mineral interaction: Significance for speciation of cations and anions // Sci. Total Environ. 2022. V. 820. 153259. https://doi.org/10.1016/j.scitotenv.2022.153259
  33. Mandzhieva S., Minkina T., Pinskiy D., Bauer T., Sushkova S. The role of soil’s particle-size fractions in the adsorption of heavy metals // Eurasian J. Soil Sci. 2014. V. 3. P. 197–205.
  34. Meunier A. Soil Hydroxy-Interlayered Minerals: a re-Interpretation of their crystallochemical Properties // Clays Clay Minerals. 2007. V. 55. № 4. P. 380–388.
  35. Minkina T., Nevidomskaya D., Burachevskaya M., Bauer T., Shuvaeva V., Soldatov A., Mandzhieva S., Zubavichus Y. Possibilities of chemical fractionation and X-ray spectral analysis in estimating the speciation of Cu2+ with soil solid-phase components // Appl. Geochem. 2019. V. 102. P. 55–63. https://doi.org/10.1016/j.apgeochem.2019.01.005
  36. Moon E.M., Peacock C.L. Adsorption of Cu(II) to ferrihydrite and ferrihydrite–bacteria composites: Importance of the carboxyl group for Cu mobility in natural environments // Geochim. Cosmochim. Acta. 2012. V. 92. P. 203–219. https://doi.org/10.1016/j.gca.2012.06.012
  37. Osei B.A., Singh B. Effect of selective removal of organic matter and iron oxides on the specific surface areas of some tropical soil clays // Ghana J. Agricultural Sci. 2000. V. 33. № 1. P. 55–61.
  38. Peacock C.L., Sherman D.M. Copper(II) sorption onto goethite, hematite and lepidocrocite: A surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy // Geochim. Cosmochim. Acta. 2004. V. 68. № 12. P. 2623–2637. https://doi.org/10.1016/j.gca.2003.11.030
  39. Picard F., Chaouki J. Selective extraction of heavy metals from two real calcium-rich contaminated soils by a modified NTA // J. Hazardous Mater. 2016. V. 318. P. 48–53. https://doi.org/10.1016/j.jhazmat.2016.06.046
  40. Qi Y., Zhu J., Fu Q., Hu H., Huang Q. Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals // J. Environ. Management. 2017. V. 200. P. 304–311. https://doi.org/10.1016/j.jenvman.2017.05.087
  41. Qu C., Chen W., Hu X., Cai P., Chen C., Yu X.-Y., Huang Q. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors // Environ. Int. 2019. V. 131. 104995. https://doi.org/10.1016/j.envint.2019.104995
  42. Ravat C., Dumonceau J., Montel-Rivera F. Acid/base and Cu(II) binding properties of natural organic matter extracted from wheat bran: modeling by the surface complexation model // Wat. Res. 2000. V. 34. № 4. P. 1327–1339.
  43. Rennert T., Rabus W. Rinklebe J. Modelling the concentrations of dissolved contaminants (Cd, Cu, Ni, Pb, Zn) in floodplain soils // Environ. Geochem. Health. 2017. V. 39. P. 331–344. https://doi.org/10.1007/s10653-016-9859-4
  44. Schmid M.W., Kogel-Knabner I. Organic matter in particle-size fractions from A and B horizons of a Haplic Alisol // Eur. J. Soil Sci. 2002. V. 53. P. 383–391.
  45. Seda N.N., Koenigsmark F., Vadas T.M. Sorption and coprecipitation of copper to ferrihydrite and humic acid organomineral complexes and controls on copper availability // Chemosphere. 2016. V. 147. P. 272–278. https://doi.org/10.1016/j.chemosphere.2015.12.106
  46. Sipos P., Kis V.K., Balazs R., Toth A., Nemeth T. Effect of pedogenic iron-oxyhydroxide removal on the metal sorption by soil clay minerals // J. Soils Sediments. 2021. V. 21. P. 1785–1799. https://doi.org/10.1007/s11368-021-02899-x
  47. Sipos P., Németh T., Kis V.K., Mohai I. Sorption of copper, zinc and lead on soil mineral phases // Chemosphere. 2008. V. 73. P. 461–469. https://doi.org/10.1016/j.chemosphere.2008.06.046
  48. Sposito G., Holtzclaw K.M., LeVesque-Madore C.S. Cupric ion complexation by fulvic acid extracted from sewage sludge–soil mixtures // Soil Sci. Soc. Am. J. 1979. V. 43. P. 1148–1155.
  49. Strawn D.G., Baker L.L. Molecular characterization of copper in soils using X-ray absorption spectroscopy // Environ. Poll. 2009. V. 157(10). P. 2813–2821. https://doi.org/10.1016/j.envpol.2009.04.018
  50. Strawn D., Palmer N.E., Furnare L.J., Goodell C., Amonette J.E., Kukkadapu R.K. Copper sorption mechanisms on smectites // Clays and Clay Minerals. 2004. V. 52. № 3. P. 321–333. https://doi.org/10.1346/CCMN.2004.0520307
  51. Tipping E. Humic ion-binding model VI: an improved description of the interactions of protons and metal-ions with humic substances. // Aquat. Geochem. 1998. V. 4. P. 3–48.
  52. Weng L., Riemsdijk W., Hiemstra T. Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids // Geochim. Cosmochim. Acta. 2008. V. 72. P. 5857–5870. https://doi.org/10.1016/j.gca.2008.09.015
  53. Weng L., Temminghoff E.J.M., Riemsdijk W. Contribution of individual sorbents to the control of heavy metal activity in sandy soil // Environ. Sci. Technol. 2001. V. 35. P. 4436–4443.
  54. World reference base for soil resources 2014. International soil classi-fication system for naming soils and creating legends for oil maps. Food and Ag-ricultural Organization of the United Nations. Rome, 2014. 182 p.
  55. Wu, Laird D.A., Thompson M.L. et al. Sorption and desorption of copper on soil clay components // J. Environ. Qual. 1999. V. 28. P. 334–338.
  56. Xie S., Wen Z., Zhan H., Jin M. An Experimental Study on the Adsorption and Desorption of Cu(II) in Silty Clay // Hindawi Geofluids. 2018. P. 3610921. https://doi.org/10.1155/2018/3610921
  57. Xu J., Tan W., Xiong J., Wang M., Fang L., Loopal L.L. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra // J. Colloid Interface Sci. 2016. V. 473. P. 141–151. https://doi.org/10.1016/j.jcis.2016.03.066
  58. Xue B., Huang L., Huang Y., Zhou F., Li F., Kubar K.A., Li X., Lu J., Zhu J. Roles of soil organic carbon and iron oxides on aggregate formation and stability in two paddy soils. // Soil Till. Res. 2019. V. 187. P. 161–171. https://doi.org/10.1016/j.still.2018.12.010
  59. Zhuang J., Yu G.-R. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals // Chemosphere. 2002. V. 49. P. 619–628. https://doi.org/10.1016/j.jcis.2005.08.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (269KB)
3.

Download (119KB)
4.

Download (380KB)
5.

Download (344KB)
6.

Download (167KB)

Copyright (c) 2023 М.И. Пятова, И.И. Толпешта, Ю.Г. Изосимова, М.М. Карпухин, Н.Ю. Барсова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies