Soil Biophilic Elements (С, N, Р) and Microbial Respiration Activity in Forest Parks of Moscow and Rural Forests

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In six forest parks of Moscow and four rural forests (5 plots each, n = 50), soil physical, chemical and microbial properties of the upper 10 cm layer were assessed in combination to vegetation properties. The content of carbon (C), nitrogen (N), and phosphorus (P) in soil and microbial biomass was determined. It was revealed that soil density, pH value, content of N–\({\text{NO}}_{3}^{ - },\) Ca and heavy metals (Pb, Cu, Ni, Zn) increase in forest parks compared to rural forests. In the soil of the forest parks, a decrease in the content of microbial biomass C (Cmic), its basal respiration (BR), and microbial C- and N-availability (Cmic/C, Nmic/N, BR/C) was noted. The changes of soil microbial properties are mainly driven by the abundance of leaf litter and the content of available soil C (13–35% of the explained variance). The microbial response to the soil enrichment by low molecular weight organic substrates (carbohydrates, carboxylic and phenolic acids, amino acids, amino sugars) in forest parks and rural forests did not differ significantly. In the soils of forest parks, no changes in microbial mineralization and immobilization of P (Pmic, Pmic/P) were found as well. The impact of urbanization on the forest ecosystems has led mainly to a decrease in the intensity of processes associated with soil C and N cycles. Apparently, such changes are caused by the recreational activity and the management practice of green spaces in the city, which leads, in particular, to a decrease in the amount of forest litter in parks compared to rural forests.

About the authors

N. D. Ananyeva

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences

Author for correspondence.
Email: ananyeva@rambler.ru
Russia, 142290, Pushchino

A. V. Yudina

Dokuchaev Soil Science Institute

Email: ananyeva@rambler.ru
Russia, 119017, Moscow

A. E. Komarova

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences; Peoples’ Friendship University of Russia

Email: ananyeva@rambler.ru
Russia, 142290, Pushchino; Russia, 117198, Moscow

V. I. Vasenev

Soil Geography and Landscape Group, Wageningen University

Email: ananyeva@rambler.ru
Netherlands, 6700, Wageningen

Yu. L. Sotnikova

Peoples’ Friendship University of Russia

Email: ananyeva@rambler.ru
Russia, 117198, Moscow

M. S. Kadulin

Lomonosov Moscow State University

Email: ananyeva@rambler.ru
Russia, 119991, Moscow

A. V. Dolgikh

Institute of Geography, Russian Academy of Sciences

Email: ananyeva@rambler.ru
Russia, 119017 , Moscow

A. Yu. Gorbacheva

Lomonosov Moscow State University

Email: ananyeva@rambler.ru
Russia, 119991, Moscow

S. V. Sushko

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences; Peoples’ Friendship University of Russia; Agrophysical Research Institute

Email: ananyeva@rambler.ru
Russia, 142290, Pushchino; Russia, 117198, Moscow; Russia, 195220 , St. Petersburg

K. V. Ivashchenko

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences; Peoples’ Friendship University of Russia

Email: ananyeva@rambler.ru
Russia, 142290, Pushchino; Russia, 117198, Moscow

R. Yu. Khatit

Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences; Peoples’ Friendship University of Russia

Email: ananyeva@rambler.ru
Russia, 142290, Pushchino; Russia, 117198, Moscow

E. A. Dovletyarova

Peoples’ Friendship University of Russia

Email: ananyeva@rambler.ru
Russia, 117198, Moscow

References

  1. Ананьева Н.Д., Иващенко К.В., Сушко С.В. Микробные показатели городских почв и их роль в оценке экосистемных сервисов (обзор) // Почвоведение. 2021. № 10. С. 1231–1246. https://doi.org/10.31857/S0032180X21100038
  2. Ананьева Н.Д., Сусьян Е.А., Гавриленко Е.Г. Особенности определения углерода микробной биомассы методом субстрат-индуцированного дыхания // Почвоведение. 2011. № 11. С. 1327–1333.
  3. Буйволова А.Ю., Рахлеева А.А., Буйволов Ю.А., Быкова Е.П. Структура комплексов мезофауны почв лесопарковой зоны Москвы и Приокско-террасного биосферного заповедника // Почвоведение. 2016. № 12. С. 1475–1484. https://doi.org/10.7868/S0032180X16120042
  4. Васенев В.И., Ананьева Н.Д., Иващенко К.В. Влияние поллютантов (тяжелые металлы, дизельное топливо) на дыхательную активность конструктоземов // Экология. 2013. № 6. С. 436–445. https://doi.org/10.7868/S0367059713060115
  5. Герасимова М.И., Ананко Т.В., Савицкая Н.В. Разработка подходов к введению антропогенно-измененных почв в содержание почвенной карты Российской Федерации (на примере Московской области) // Почвоведение. 2020. № 1. С. 19–30. https://doi.org/10.31857/S0032180X20010086
  6. Герасимова М.И., Строганова М.Н., Можарова Н.В., Прокофьева Т.В. Антропогенные почвы: генезис, география, рекультивация. М.: Ойкумена, 2003. 270 с.
  7. Звягинцев Д.Г., Добровольская Т.Г., Бабьева И.П., Зенова Г.М., Лысак Л.В., Марфенина О.Е. Роль микроорганизмов в биогеоценотических функциях почв // Почвоведение. 1992. № 6. С. 63–77.
  8. Карта четвертичных отложений: N-37-II (Москва). Государственная геологическая карта Российской Федерации. Карта четвертичных отложений, масштаб: 1 : 200 000. Сер.: Московская. Составлена: Геоцентр-Москва, 1997. редактор: В.В. Дашевский.
  9. Кудреватых И.Ю. Оценка взаимосвязи между атмосферным выпадением минерального азота и растительностью в лесных экосистемах // Известия РАН. Сер. биол. 2017. № 2. С. 181–189. https://doi.org/10.1134/S106235901702008X
  10. Кузнецов В.А., Рыжова И.М., Стома Г.В. Изменение лесных экосистем мегаполиса под влиянием рекреационного воздействия // Почвоведение. 2019. № 5. С. 633–642. https://doi.org/10.1134/S0032180X1905006X
  11. Мошкина Е.В., Мамай А.В. Оценка плодородия и экологического состояния автоморфных почв городских и пригородных лесов по показателям их биологической активности (на примере г. Петрозаводска) // Вестник современной науки. 2016. № 10. С. 31–37.
  12. Никитин Д.А., Семенов М.В., Чернов Т.И., Ксенофонтова Н.А., Железова А.Д., Иванова Е.А., Хитров Н.Б., Степанов А.Л. Микробиологические индикаторы экологических функций почв (обзор) // Почвоведение. 2022. № 2. Р. 228–243. https://doi.org/10.31857/S0032180X22020095
  13. Постановление Правительства Москвы от 10 сентября 2002 г. № 743-ПП “Об утверждении Правил создания, содержания и охраны зеленых насаждений и природных сообществ города Москвы”. Изменено 28 апреля 2022 г. Об утверждении Правил создания, содержания и охраны зеленых насаждений и природных сообществ города Москвы (с изменениями на 28 апреля 2022 г.).
  14. Состояние загрязнения атмосферы в городах на территории России за 2018 г. Федеральная служба по гидрометеорологии и мониторингу окружающей среды, Федеральное государственное бюджетное учреждение “Главная геофизическая обсерватория им. А.И. Воейкова”. Санкт-Петербург 2019.
  15. Юдина А.В., Фомин Д.С., Валдес-Коровкин И.А., Чурили-н Н.А., Александрова М.С., Головлева Ю.А., Филиппов Н.В., Ковда И.В., Дымов А.А., Милановский Е.Ю. Пути создания классификации почв по гранулометрическому составу на основе метода лазерной дифракции // Почвоведение. 2020. № 11. С. 1353–1371. https://doi.org/10.31857/S0032180X20110143
  16. Шишов Л.Л., Тонконогов В.Д., Лебедева И.И., Герасимова М.И. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 341 с.
  17. Allison S.D., Czimczik C.I., Treseder K.K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest // Global Change Biology. 2008. V. 14. P. 1156–1168. https://doi.org/10.1111/j.1365-2486.2008.01549.x
  18. Allison S.D., Weintraub M.N., Gartner T.B., Waldrop M.P. Evolutionary economic principles as regulators of soil enzyme production and ecosystem function / Eds.: G. Shukla, A. Varma. Soil Enzymology. Springer, Berlin, 2010. P. 229–243.
  19. Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221. https://doi.org/10.1016/0038-0717(78)90099-8
  20. Azarbad H., van Gestel C.A., Niklińska M., Laskowski R., Röling W.F., van Straalen N.M. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses // International J. Molecular Sciences. 2016. V. 17(6). P. 933. https://doi.org/10.3390/ijms17060933
  21. Beroigui M., Naylo A., Walczak M., Hafidi M., Charzyński P., Świtoniak M., Różański S., Boularbah A. Physicochemical and microbial properties of urban park soils of the cities of Marrakech, Morocco and Toruń, Poland: Human health risk assessment of fecal coliforms and trace elements // Catena. 2020. V. 194. 104673. https://doi.org/10.1016/j.catena.2020.104673
  22. Bilyera N., Blagodatskaya E., Yevdokimov I., Kuzyakov Y. Towards a conversion factor for soil microbial phosphorus // European J. Soil Biology. 2018. V. 87. P. 1–8. https://doi.org/10.1016/j.ejsobi.2018.03.002
  23. Bowden R.D., Davidson E., Savage K., Arabia C., Steudler P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest // Forest Ecology and Management. 2004. V. 196. P. 43–56. https://doi.org/10.1016/j.foreco.2004.03.011
  24. Brenner R., Boone R.D., Ruess R.W. Nitrogen additions to pristine, high-latitude, forest ecosystems: consequences for soil nitrogen transformations and retention in mid and late succession // Biogeochemistry. 2005. V. 72. P. 257–282. https://doi.org/10.1007/s10533-004-0356-y
  25. Brookes P.C., Landman A., Pruden G., Jenkinson D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil // Soil Biol. Biochem. 1985. V. 17. Iss. 6. P. 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
  26. Bünemann E.K., Oberson A., Liebisch F., Keller F., Annaheim K.E., Huguenin-Elie O., Frossard E. Rapid microbial phosphorus immobilisation dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability // Soil Biol. Biochem. 2012. V. 51. P. 84–95. https://doi.org/10.1016/j.soilbio.2012.04.012
  27. Campbell C.D., Chapman S.J., Cameron C.M., Davidson M.S., Potts J.M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil // Appl. Environ. Microbiol. 2003. V. 69. P. 3593–3599. https://doi.org/10.1128/AEM.69.6.3593-3599.2003
  28. Castaldi S., Rutigliano F.A., Virzo de Santo A. Suitability of soil microbial parameters as indicators of heavy metal pollution // Water, Air, and Soil Pollution. 2004. V. 158. Iss. 1. P. 21–35. https://doi.org/10.1023/B:WATE.0000044824.88079.d9
  29. Chapman S.J., Campbell C.D., Artz R.R.E. Assessing CLPPs Using MicroResp™. A Comparison with Biolog and multi-SIR // Journal of Soils and Sediments. 2007. V. 7. P. 406–410. https://doi.org/10.1065/jss2007.10.259
  30. Chen F.-S., Li X., Nagle G., Zhan S.-X. Topsoil phosphorus signature in five forest types along an urban–suburban–rural gradient in Nanchang, southern China // J. For. Res. 2010. V. 21. P. 39–44. https://doi.org/10.1016/j.foreco.2009.11.003
  31. Chen F.-S., Yavitt J., Hu X.-F. Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China // Applied Soil Ecology. 2014. V. 75. P. 181–188. https://doi.org/10.1016/j.apsoil.2013.11.011
  32. Cui Y.Z., Zhang W.S., Bao H.J., Wang C., Cai W.J., Yu J., Streets D.G. Spatiotemporal dynamics of nitrogen dioxide pollution and urban development: Satellite observations over China, 2005–2016 // Resources, Conservation and Recycling. 2019. V. 142. Iss. 1. P. 59–68. https://doi.org/10.1016/j.resconrec.2018.11.015
  33. Cusack D.F. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient // Soil Biol. Biochem. 2013. V. 57. P. 192–203. https://doi.org/10.1016/j.soilbio.2012.07.012
  34. Cusack D.F., Lee J.K., McCleery T.L., Lecroy C.S. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban–rural tropical forest gradient // Global Change Biology. 2015. V. 21. P. 4481–4496. https://doi.org/10.1111/gcb.13066
  35. Cusack D.F., Torn M.S., McDowell W.H., Silver W.L. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils // Global Change Biology. 2010. V. 16. Iss. 9. P. 2555–2572. https://doi.org/10.1111/j.1365-2486.2009.02131.x
  36. Decina S.M., Hutyra L.R., Templer P.H. Hotspots of nitrogen deposition in the world’s urban areas: a global data synthesis // Frontiers in Ecology and the Environment. 2020. V. 18. Iss. 2. P. 92–100. https://doi.org/10.1002/fee.2143
  37. Dovletyarova E.A., Mosina L.V., Vasenev V.I., Ananyeva N.D., Patlseva A., Ivashchenko K.V. Monitoring and Assessing Anthropogenic Influence on Soil’s Health in Urban Forests: The Case from Moscow City / Eds.: A. Rakshit et al. Adaptive Soil Management: From Theory to Practices. Springer Nature Singapore Pte Ltd. 2017. P. 531–557. https://doi.org/10.1007/978-981-10-3638-5_24
  38. Enloe H.A., Lockaby B.G., Wayne C. Zipperer W.C., Somers G.L. Urbanization effects on soil nitrogen transformations and microbial biomass in the subtropics // Urban Ecosyst. 2015. https://doi.org/10.1007/s11252-015-0462-8
  39. Environmental Assessment of Soil for Monitoring / Eds.: R.J.A. Jones, F.G.A. Verheijen, H.I. Reuter, A.R. Jones. Volume V: Procedures & Protocols. EUR 23490 EN/5, Office for the Official Publications of the European Communities, Luxembourg. 2008. 165 p. https://doi.org/10.2788/94366
  40. Gmach M.R., Cherubin M.R., Kaiser K., Cerri C.E.P. Processes that influence dissolved organic matter in the soil: a review // Sci. Agric. 2020. V. 77. № 3. e20180164. https://doi.org/10.1590/1678-992X-2018-0164
  41. Groffman P.M., Pouyat R.V., Cadenasso M.L., Zipperer W.C., Szlavecz K., Yesilonis I.D., Band L.E., Brush G.S. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests // For. Ecol. Manage. 2006. V. 236. P. 177–192. https://doi.org/10.1016/j.foreco.2006.09.002
  42. Grote R., Roeland S., Alonso R. et al. Functional traits of urban trees: air pollution mitigation potential // Frontiers in Ecology and the Environment. 2016. V. 14. Iss. 10. P. 543–550. https://doi.org/10.1002/fee.1426
  43. Guo H., Nasir M., Lv J., Dai Y., Gao J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing // Ecotoxicology and Environmental Safety. 2017. V. 144. P. 300–306. https://doi.org/10.1016/j.ecoenv.2017.06.048
  44. Hu X., Wang J., Lv Y., Liu X., Zhong J., Cui X., Zhang M., Ma D., Yan X., Zhu X. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter // Front. Microbiol. 2021. V. 12. Article 707786. https://doi.org/10.3389/fmicb.2021.707786
  45. ISO 14240-2: Soil quality – determination of soil microbial biomass – Part 2: fumigation-extraction method. Geneva: International Organization for Standardization. 1997.
  46. ISO 16072. Soil quality – laboratory methods for determination of microbial soil respiration. Geneva: International Organization for Standardization. 2002.
  47. Ivashchenko K., Ananyeva N., Vasenev V., Sushko S., Seleznyova A., Kudeyarov V. Microbial C-availability and organic matter decomposition in urban soils of megapolis depend on functional zoning // Soil and Environment. 2019. V. 38(1). P. 31–41. https://doi.org/10.25252/SE/19/61524
  48. Ivashchenko K., Sushko S., Selezneva A., Ananyeva N., Zhuravleva A., Kudeyarov V., Makarov M., Blagodatsky S. Soil microbial activity along an altitudinal gradient: Vegetation as a main driver beyond topographic and edaphic factors // Applied Soil Ecology. 2021. V. 168. P. 104197. Available online 20 August 2021 0929-1393. https://doi.org/10.1016/j.apsoil.2021.104197
  49. Joergensen R.G., Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEN value // Soil Biol. Biochem. 1996. V. 28. Iss. 1. P. 33–37. https://doi.org/10.1016/0038-0717(95)00101-8
  50. Killham K. A physiological determination of the impact of environmental stress on the activity of microbial biomass // Environ. Pollut. 1985. V. 38. P. 283–294.
  51. Kouno K., Tuchiya Y., Ando T. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method // Soil Biol. Biochem. 1995. V. 27. Iss. 10. P. 1353–1357. https://doi.org/10.1016/0038-0717(95)00057-L
  52. Kuan H.L., Hallett P.D., Griffiths B.S., Gregory A.S., Watts C.W., Whitmore A.P. The biological and physical stability and resilience of a selection of Scottish soils to stresses // Eur. J. Soil Sci. 2007. V. 58. P. 811–821. https://doi.org/10.1111/j.1365-2389.2006.00871.x
  53. Kuzyakov Y., Friedel J.K., Stahr K. Review of mechanisms and quantification of priming effects // Soil Biol. Biochem. 2000. V. 32. P. 1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5
  54. Li X.M., Zhou W.Q. Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale // Urban Forestry and Urban Greening. 2019. V. 41. P. 255–263. https://doi.org/10.1016/j.ufug.2019.04.008
  55. Liu X., Duan L., Mo J., Du E., Shen J., Lu X., Zhang Y., Zhou X., He C., Zhang F. Nitrogen deposition and its ecological impact in China: an overview // Environmental Pollution. 2011. V. 159. P. 2251–2264. https://doi.org/10.1016/j.envpol.2010.08.002
  56. Lopez B.E., Urban D., White P.S. Testing the effects of four urbanization filters on forest plant taxonomic, functional, and phylogenetic diversity // Ecological Applications. 2018. V. 28. № 8. P. 2197–2205. https://www.jstor.org/stable/26623308
  57. Luo X.S., Ding J., Xu B., Wang Y.J., Li H.B., Yu S. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils // Science of The Total Environment. 2012. V. 424. P. 88–96. https://doi.org/10.1016/j.scitotenv.2012.02.053
  58. Makarov M.I., Malysheva T.I., Menyailo O.V., Soudzilovskaia N.A., Van Logtestijn R.S.P., Cornelissen J.H.C. Effect of K2SO4 concentration on extractability and isotope signature (δ13C and δ15N) of soil C and N fractions // Eur. J. Soil Sci. 2015. V. 66. P. 417–426. https://doi.org/10.1111/ejss.12243
  59. McKinney M.L. Effects of urbanization on species richness: A review of plants and animals // Urban Ecosystems. 2008. V. 11. P. 161–176. https://doi.org/10.1007/s11252-007-0045-4
  60. Mgelwa A.S., Hu Y.-L., Xu W.-B., Ge Z.-Q., Yu T.-W. Soil carbon and nitrogen availability are key determinants of soil microbial biomass and respiration in forests along urbanized rivers of southern China // Urban Forestry and Urban Greening. 2019. V. 43. Iss. 17. 126351. https://doi.org/10.1016/j.ufug.2019.05.013
  61. Mo J., Zhang W., Zhu W., Gundersen P., Fang Y., Li D. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China // Global Change Biology. 2008. V. 14. Iss. 2. P. 403–412. https://doi.org/10.1111/j.1365-2486.2007.01503.x
  62. Moscatelli M.C., Secondi L., Marabottini R., Papp R., Stazi S.R., Mania E., Marinari S. Assessment of soil microbial functional diversity: land use and soil properties affect CLPP-MicroResp and enzymes responses // Pedobiologia. 2018. V. 66. P. 36–42. https://doi.org/10.1016/j.pedobi.2018.01.001
  63. Ning Z.H., Chambers R., Abdollahi K. Modeling air pollutant removal, carbon storage, and CO2 sequestration potential of urban forests in Scotlandville, Louisiana, USA // iForest – Biogeosciences and Forestry. 2016. V. 9. P. 860–867. https://doi.org/10.3832/ifor1845-009
  64. Prieto-Fernandez A., Acea M.J., Carballas T. Soil microbial and extractable C and N after wildfire // Biology and Fertility of Soils. 1998. V. 27. P. 132–142. https://doi.org/10.1007/s003740050411
  65. Qin G., Wu J., Zheng X., Zhou R., Wei Z. Phosphorus forms and associated properties along an urban–rural gradient in Southern China // Water. 2019. V. 11. 2504. https://doi.org/10.3390/w11122504
  66. Sacca M.L., Caracciolo A.B., Di Lenola M., Grenni P. Ecosystem services provided by soil microorganisms // Soil biological communities and ecosystem resilience. Sustainability in plant and crop protection. Springer International Publishing, Switzerland. 2017. P. 9–24. https://doi.org/10.1007/978-3-319-63336-7_2
  67. Schlesinger W.H., Cole J.J., Finzi A.C., Holland E.A. Introduction to coupled biogeochemical cycles // Frontiers in Ecology and the Environment. 2011. V. 9. Iss. 1. P. 5–8. https://doi.org/10.1890/090235
  68. Vakula M.A., Guseva T.V., Tikhonova I.O., Molchanova Ya.P., Schelchkov K.A. Green and Resilient City: Obligatory Requirements and Voluntary Actions in Moscow // Green Technologies and Infrastructure to Enhance Urban Ecosystem Services. Proceedings of the Smart and Sustainable Cities Conference 2018. Springer Nature Switzerland AG 2020. SMSC 2018. Springer Geography, 2020. P. 249–268.
  69. Vasenev V., Smagin A., Ananyeva N., Ivashchenko K., Gavrilenko E., Prokofeva T., Valentini R. Urban Soil’s Functions: Monitoring, Assessment, and Management // Adaptive Soil Management: From Theory to Practices. 2017. P. 359–409. https://doi.org/10.1007/978-981-10-3638-5_18
  70. Wardle D.A., Bardgett R.D., Klironomos J.N., Setala H., van der Putten W.H., Wall D.H. Ecological linkages between aboveground and belowground biota // Science. 2004. V. 304. P. 1629–1633. https://doi.org/10.1126/science.1094875
  71. Yang J.L., Zhang G.L. Formation, characteristics and eco-environmental implications of urban soils – A review // Soil Science and Plant Nutrition. 2015. V. 61. P. 30–46. https://doi.org/10.1080/00380768.2015.1035622
  72. Yazdi S.K., Dariani A.G. CO2 emissions, urbanization and economic growth: Evidence from Asian countries // Economic Research-Ekonomska Istrazivaja. 2019. V. 32. P. 510–530. https://doi.org/10.1080/1331677X.2018.1556107
  73. Yevdokimov I., Larionova A., Blagodatskaya E. Microbial immobilisation of phosphorus in soils exposed to drying-rewetting and freeze-thawing cycles // Biology and Fertility of Soils. 2016. V. 52. P. 685–696. https://doi.org/10.1007/s00374-016-1112-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (4MB)
3.

Download (204KB)
4.

Download (159KB)
5.

Download (356KB)

Copyright (c) 2023 Н.Д. Ананьева, Р.Ю. Хатит, К.В. Иващенко, С.В. Сушко, А.Ю. Горбачева, А.В. Долгих, М.С. Кадулин, Ю.Л. Сотникова, В.И. Васенев, А.Е. Комарова, А.В. Юдина, Э.А. Довлетярова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies