Electronic Structure of Aluminum Oxide with Oxygen Vacancies


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Results of numerical calculations of the electronic structure of nonstoichiometric aluminum oxide with a concentration of oxygen vacancies of 6% have been presented. The calculations have been performed within the scope of the density-functional theory of the coherent-potential approximation with a disordered location of vacancies. It has been established that the presence of oxygen vacancies leads to the appearance of a peak in the density of states inside the energy gap and additional electronic states at the bottom of the conduction band, which gives a decrease in the energy gap to 2 eV. The simulation of the aluminum oxide of composition Al2[O0.98]3\({\text{O}}_{{{\text{0}}{\text{.06}}}}^{{{\text{int}}\,{\text{erstitial}}}}\) with vacancies in the oxygen sublattice and oxygen atoms in interstices leads to a semiconducting character of the energy spectrum with a band gap of ~1 eV, which is formed between the p states of the impurity interstitial oxygen atoms and the s states of the vacancies.

作者简介

M. Korotin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: michael.korotin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

E. Kurmaev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: michael.korotin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018