New data on systematic composition of Early Triassic ammonoids from the Shimanskyites shimanskyi Zone of The Kamenushka River basin, South Primorye and their phylogenetic and stratigraphic significance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New information has been obtained regarding the systematic composition of ammonoids and conodonts from the Shimanskyites shimanskyi Zone of the lower (Smithian) Substage of the Olenekian Stage in South Primorye. This is based on the material from the Lower Triassic sections of the Kamenushka River basin, specifically from the Kamenushka-2 and Perevalny sections. In light of the correlation data pertaining to these sections, it is proposed that the Scythogondolella milleri conodont Zone in this region corresponds to two ammonite zones (Anasibirites nevolini and Shimanskyites shimanskyi) of the Smithian Substage in South Primorye. The new species of the genera Owenites (O. golozubovi sp. nov.) and Preflorianites (P. lelikovi sp. nov.) are described herein. The clarification and emendation of the diagnosis of the genus Submeekoceras, in conjunction with the results of its comparison with other genera of the family Arctoceratidae, permit a reconsideration of the generic affiliation of the majority of forms currently attributed to the genus Arctoceras. The obtained results make it possible to outline the phylogenetic relationships of a number of genera belonging to the families Lanceolitidae and Ussuritidae (order Prolecanitida Miller et Furnish, 1954), as well as Proptychitidae and Arctoceratidae (order Ceratitida Hyatt, 1884). The prevalence of diverse ostracod species in the Shimanskyites shimanskyi Zone, coupled with a relatively diverse ammonoid community, suggests that anoxia, which is assumed to have been present in other marine basins in other regions of the world at that time, was absent in the bottom waters of the late Smithian sea marine basin of South Primorye.

About the authors

Y. D. Zakharov

Far Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch)

Author for correspondence.
Email: yurizakh@mail.ru
Russian Federation, Vladivostok, 690022

L. G. Bondarenko

Far Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch)

Email: yurizakh@mail.ru
Russian Federation, Vladivostok, 690022

O. P. Smyshlyaeva

Far Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch)

Email: yurizakh@mail.ru
Russian Federation, Vladivostok, 690022

A. M. Popov

Far Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch)

Email: yurizakh@mail.ru
Russian Federation, Vladivostok, 690022

G. I. Guravskaya

Far Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch)

Email: yurizakh@mail.ru
Russian Federation, Vladivostok, 690022

F. Wang

China University of Geological Sciences

Email: yurizakh@mail.ru
China, Wuhan, 430

I. V. Borisov

Far Eastern State Institute of Arts

Email: yurizakh@mail.ru
Russian Federation, Vladivosok, 690091

N. N. Barinov

Far Eastern Geological Institute, Russian Academy of Sciences (Far Eastern Branch)

Email: yurizakh@mail.ru
Russian Federation, Vladivostok, 690022

References

  1. Богословская М.Ф., Кузина Л.Ф., Леонова Т.Б. Классификация и распространение позднепалеозойских аммоноидей // Ископаемые цефалоподы: новейшие достижения в их изучении. М.: ПИН РАН, 1999. С. 89–124.
  2. Бурий Г.И. Нижнетриасовые конодонты Южного Приморья. М.: Наука, 1979. 144 с.
  3. Бурий И.В. Стратиграфия триасовых отложений Южного Приморья // Тр. ДВПИ. 1959. Т. 54. № 1. С. 3–34.
  4. Бурий И.В., Жарникова Н.К. Новые виды триасовых цератитов Дальнего Востока // Сб. статей по палеонтол. и стратигр. 1962. № 29. C. 8–92.
  5. Дагис А.А. Раннетриасовые конодонты Средней Сибири. М.: Наука, 1984. 69 с.
  6. Дагис А.С., Ермакова С.П. Раннеоленекские аммоноидеи Сибири. М.: Наука, 1990. 313 с.
  7. Динер К. Триасовые фауны цефалопод Приморской области и Восточной Сибири // Тр. Геол. ком. 1885. Т. 14. № 13. С. 1–59.
  8. Друщиц В.В., Богословская М.Ф., Догужаева Л.И. Эволюция септальных трубок аммоноидей // Палеонтол. журн. 1976. № 1. С. 41–56.
  9. Ермакова С.П. Аммоноидеи и биостратиграфия нижнего триаса Верхоянского хребта. М.: Наука, 1981. 136 с.
  10. Захаров Ю.Д. Биостратиграфия и аммоноидеи нижнего триаса Южного Приморья. М.: Наука, 1968. 176 с.
  11. Захаров Ю.Д. Раннетриасовые аммоноидеи Востока СССР. М.: Наука, 1978. 224 c.
  12. Захаров Ю.Д. Рост и развитие аммоноидей и некоторые проблемы экологии и эволюции // Систематика и экология головоногих моллюсков. Л.: ЗИН АН СССР, 1983. С. 26–31.
  13. Захаров Ю.Д., Смышляева О.П. Новые среднеоленекские (раннетриасовые) аммоноидеи Южного Приморья // Палеонтол. журн. 2016. № 3. С. 21–28.
  14. Захаров Ю.Д., Хорачек М., Смышляева О.П. и др. Раннеоленекские аммоноидеи бассейна реки Каменушка в Южном Приморье и условия среды их обитания // Золотой век российской малакологии. Сб. трудов Всеросc. науч. конф., посвященной 100-летию проф. В.Н. Шиманского (26–27 мая 2016 г., Москва; 31 мая – 03 июня 2016 г., Саратов). Саратов: Саратовский гос. тех. ун-т им. Ю.А. Гагарина, 2016. С. 167–177.
  15. Кипарисова Л.Д. Палеонтологическое обоснование стратиграфии триасовых отложений Приморского края. Ч. 1. Головоногие моллюски. Л.: Гостехиздат, 1961. С. 1–278 (Тр. ВСЕГЕИ. Нов. сер. Т. 48).
  16. Клец Т.В. Особенности фациальной зависимости раннеоленекских конодонтофорид Дальнего Востока России и возможные совершенствования стратиграфических схем // Геол. и геофиз. 2008. Т. 49. № 10–11. С. 217–221.
  17. Клец Т.В., Копылова А.В. Новые находки триасовых конодонтофорид на северо-востоке Азии // Геол. и геофиз. 2006. Т. 47. Новости палеонтологии и стратиграфии (приложение). № 8. С. 95–105.
  18. Корчинская М.В. Оленекские аммониты Шпицбергена // Учен. Зап. НИИГА. Палеонтол. стратигр. 1969. № 27. С. 80–89.
  19. Леликов Е.П. Геология фосфоритов дна Японского моря. Владивосток: Дальнаука, 2001. 116 с.
  20. Смышляева О.П., Захаров Ю.Д., Попов А.М. и др. Стратиграфические подразделения нижнего триаса Южного Приморья. Ст. 3. Первая находка Euflemingites prynadai и Shimanskyites shimanskyi (Ammonoidea) в разрезе СМИД // Тихоокеан. геол. 2018. Т. 37. № 6. С. 21–38.
  21. Триас и юра Сихотэ-Алиня. Кн. I. Терригенный комплекс / Ред. П.В. Маркевич, Ю.Д. Захаров. Владивосток: Дальнаука, 2004. 421 с.
  22. Шевырев А.А. Триасовые аммоноидеи юга СССР // Тр. Палеонтол. ин-та АН СССР. 1968.Т. 119. 272 с.
  23. Шевырев А.А. Триасовые аммониты Северо-Западного Кавказа // Тр. Палеонтол. ин-та РАН. 1995. Т. 264. 176 с.
  24. Bando Y. The Triassic stratigraphy and ammonite fauna of Japan // Sci. Rep. Tohoku UniV. 1964. V. 36. № 1. P. 1–137.
  25. Blattmann F.R., Schneebeli-Hermann E., Adatte T. Examining carbon cycle perturbations during Smithian–Spathian in central Spitsbergen // Mém. Geol. (Lausanne). 2023. № 50. P. 127–128.
  26. Bondarenko L.G., Buryi G.I., Zakharov Y.D. et al. Latest Smithian (Early Triassic) conodonts from Artyom, South Primorye, Russian Far East // Bull. New Mexico Mus. Natur. Hist. Sci. 2013. V. 61. P. 55–56.
  27. Brayard A., Bucher H. Smithian (Early Triassic) ammonoid faunas from northwestern Guangxi (South China): taxonomy and biochronology // Fossils and Strata. 2008. V. 56. P. 1–179.
  28. Brayard A., Bucher H., Escarguel G. et al. The Early Triassic ammonoid recovery: Paleoclimatic signitificance of diversity gradients // Palaeogeogr., Palaeoclimatol., Palaeoecol. 2006. V. 239. P. 374–395.
  29. Brayard A., Bylund K.G., Jenks J.F. et al. Smithian ammonoid faunas from Utah: Implications for Early Triassic biostratigraphy, correlation and basinal paleogeography // Swiss J. Paleontol. 2013. V. 132. P. 141–219.
  30. Brayard A., Jenks J.F., Bylund K.G. et al. Latest Smithian (Early Triassic) ammonoid assemblages in Utah (western USA basin) and their implications for regional biostratigraphy, biogeography and placement of the Smithian/Spathian boundary // Geobios. 2021. V. 69. № 2.
  31. Brayard A., Olivier N., Vennin E. et al. New middle and late Smithian ammonoid faunas from the Utah/Arizona border: New evidence for calibrating Early Triassic transgressive-regressive trends and paleobiogeographical signals in the western USA basin // Global Planet. Change. 2020. V. 192. P. 103–251.
  32. Brühwiler T., Bucher H., Goudemand N. Smithian (Early Triassic) ammonoids from Tulong, South Tibet // Geobios. 2010a. V. 43. P. 403–431.
  33. Brühwiler T., Bucher H., Goudemand N., Galfetti T. Smithian (Early Triassic) ammonoid faunas from Exotic Blocks from Oman: taxonomy and biochronology // Palaeontogr. Abt. A. 2012c. V. 296. P. 1–107.
  34. Brühwiler T., Bucher H., Krystyn L. Middle and late Smithian (Early Triassic) ammonoids from Spiti, India // Spec. Pap. Palaeontol. 2012b. V. 88. P. 115–174.
  35. Brühwiler T., Bucher H., Rooh G. et al. A new early Smithian ammonoid fauna from the Salt Range (Pakistan) // Swiss. J. Palaeontol. 2010b. V. 130. P. 87–201.
  36. Brühwiler T., Bucher H., Ware D. et al. Smithian (Early Triassic) ammonoids from the Salt Range, Pakistan // Spec. Pap. Palaeontol. 2012a. V. 88. P. 1–114.
  37. Chao K. Lower Triassic ammonoids from Western Kwangsi, China // Palaeontol. Sin. New Ser. B. 1959. № 9. P. 1–355.
  38. Chen Z.Q., Benton M.J. The timing and pattern of biotic recovery following the end-Permian mass extinction // Nat. Geosci. 2012. V. 5. P. 375–383.
  39. Clarkson M.O., Richoz S., Wood R.A. et al. A new highly-resolution δ13C record for the Early Triassic: Insights from the Arabian Platform // Gondwana Res. 2013. V. 24. P. 233–242.
  40. Edward O., Ragon C., Leu M. et al. Marine sulfur isotope records and environmental changes during the Smithian-Spathian transition: insights from nearshore and offshore Tethyan successiоns // Mém. Geol. (Lausanne). 2023. № 50. P. 133.
  41. Forel M.-B. The Permian-Triassic mass extinction: Ostracods (Crustacea) and microbialites // C.R. Geosci. 2013. V. 345. P. 203–211.
  42. Galfetti T., Bucher H., Ovtchara M. et al. Timing of the Early Triassic carbon cycle perturbation inferred from new U-Pb ages and ammonoid biochronozones // Earth Planet. Sci. Lett. 2007a. V. 258. P. 593–604.
  43. Galfetti T., Hochuli P.A., Brayard A. Smithian-Spathian boundary event: Evidence for global climatic change in the wake of the end-Permian biotic crisis // Geology. 2007b. V. 35. P. 291–294.
  44. Goudemand N., Romano C., Brayard A. et al. Comment on “Lethally hot temperatures during the Early Triassic greenhouse” // Science. 2013. V. 339. P. 1033a–1033c.
  45. Goudemand N., Romano C., Leu M. et al. Dynamic interplay between climate and marine biodiversity upheavals during the Early Triassic (Smithian–Spathian) biotic crisis // Earth-Sci. Rev. 2018. V. 195. P. 169–178.
  46. Grosjean A.-S., Vennin E., Oliver N. et al. Early Triassic environmental dynamics and microbial development during the Smithian–Spathian transition (Lower Weber Canyon), Utah, A // Sediment. Geol. 2018. V. 363. P. 136–151.
  47. Guex J. Le Trias inférieur des Salt Ranges (Pakistan): problémes biochronologiques // Ecl. Geol. HelV. 1978. V. 71. № 1. P. 105–141.
  48. Hammer Ø., Jones M., Schneebeli E. et al. Are Early Triassic extinction events associated with mercury anomalies? A reassessment of the Smithian/Spathian boundary extinction // Earth-Sci. ReV. 2019. V. 195. P. 179–190.
  49. Hansen B.B., Bucher H., Schneebeli E., Hammer Ø. The middle Smithian (Early Triassic) ammonoid Arctoceras blomstrandi: Conch morphology and ornamentation in related to stratigraphy // Pap. in Palaeontol. 2020. V. 7. № 1. P. 1–23.
  50. Hermann E., Hochuli P.A., Bucher H., Roohi C. Uppermost Permian to Middle Triassic paleontology of the Salt Range and Sugar Range, Pakistan // ReV. Palaeobot. Palynol. 2012. V. 169. P. 61–95.
  51. Hyatt A., Smith J.P. The Triassic cephalopod genera of America // U.S. Geol. Surv. Prof. Paper. 1905. V. 40. P. 1–394.
  52. Jattiot R., Bucher H., Brayard A. et al. Smithian ammonoid faunas from northeastern Nevada: implications for Early Triassic biostratigraphy and correlation within the western USA basin // Palaeontogr. Abt. A. 2017. V. 309. P. 1–89.
  53. Jattiot R., Bucher H., Brayard A. Smithian (Early Triassic) ammonoid faunas from Timor: taxonomy and biochronology // Palaeontogr. Abt. A. 2020. V. 317. № 1–6. P. 1–137.
  54. Jenks J.F. Smithian (Early Triassic) ammonoid biostratigraphy at Crittenden Springs, Elko County, Nevada and a new ammonoid from the Meekoceras gracilitatis Zone // Bull. New Mexico Mus. Natur. Hist. Sci. 2007. V. 40. P. 81–90.
  55. Jenks J., Brayard A. Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko county, Nevada: taxonomy, biostratigraphy and biogeography // Bull. New Mexico Mus. Natur. Hist. Sci. 2018. V. 78. P. 1–175.
  56. Jenks J.F., Brayard A., Brühwiler T., Bucher H. New Smithian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada: Implications for taxonomy, biostratigraphy and biogeography // Bull. New Mexico Mus. Natur. Hist. Sci. 2010. V. 48. P. 1–41.
  57. Joachimski M.M., Lai X., Shen S. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction // Geology. 2012. V. 40. P. 195–198.
  58. Jones P.J. Marine Ostracoda (Palaeocopida, Podocopida) from the Lower Triassic of the Perch Basin, Western Australia // Bull. Bur. Miner. Res., Geol. and Geophys. 1970. V. 108. P. 115–142.
  59. Kiliç A., Guex J., Hirsch F. Proteromorphosis in Early Triassic conodonts // Morphogenesis, Environmental Stress and Reverse Evolution. Springer, Switzerland, 2020. P. 59–96.
  60. Krystyn L., Richoz S., Baud A., Twitchett R.J. A unique Permian–Triassic boundary section from the Neotethyan Hawasina Basin, Central Oman Mountains // Palaeogeogr., Palaeoclimatol., Palaeoecol. 2003. V. 191. P. 329–344.
  61. Kummel B. The Spitsbergen arctoceratids // Bull. Mus. Comp. Zool. 1961. V. 123. № 9. P. 499–532.
  62. Kummel B., Erben H.K. Lower and Middle Triassic cephalopods from Afganistan // Palaeontogr. Abt. A. 1968. Bd 129. № 4–6. P. 95–148.
  63. Leu M., Bucher H., Goudemand N. Clade-dependent size response of conodonts to environmental changes during the late Smithian extinction // Earth-Sci. ReV. 2018. V. 195 (1294).
  64. Lindsröm G. Om Trias-och Jura-fõrsteningar fran Spetsbergen // K. Svenska Vetensk. Akad. Handl. 1865. V. 6. P. 1–20.
  65. Lyu Z., Zhang L., Zhao L. et al. Global-ocean circulation changes during the Smithian–Spathian transition inferred from carbon-sulfur cycle records // Earth-Sci. ReV. 2019. V. 195. P. 114–132.
  66. McArthur J.M., Howard R.J., Shields G.A. Chapter 7. Strontium isotope stratigraphy // Geological Time Scale. V. 1. Amsterdam: Elsevier, 2020. P. 1–238.
  67. Mojsisovics E. Arktische Triasfaunen // Mem. Acad. Imp. Sci. St. Pétersb. 1886. Bd 33. № 6. S. 1–159.
  68. Öberg P. Om Trias-Forsteningar fran Spesbergen // K. Svenska Vetensk. Akad. Handl. 1877. V. 14. P. 1–18.
  69. Orchard M.J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals // Palaeogeogr., Palaeoclimatol., Palaeoecol. 2007. V. 252. P. 93–117.
  70. Orchard M.J., Toser E.T. Triassic conodont biochonology, its calibration with the ammonoid standard and a biostratigraphic summary for the western Canada sedimentary basin // Bull. Canad. Petrol. Geol. 1997. V. 45. № 4. P. 675–692.
  71. Payne J.L., Lehmann D.J., Wei J. et al. Large perturbation of the Carbon cycle during recovery from the end-Permian extinction // Science. 2004. V. 305. P. 506–509.
  72. Romano C., Goudemand N., Vennemann T.W. et al. Climatic and biotic upheavals following the end-Permian mass extinction // Nat. Geosci. 2013. V. 6. P. 57–60.
  73. Shigeta Y., Zakharov Y. Cephalopods // The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. Tokyo: Nat. Mus. of Nature and Sci., 2009. P. 44–140 (Nat. Mus. of Nature and Sci. Monogr. № 38).
  74. Smith J.P. Lower Triassic ammonoids of North America // U.S. Geol. Surv. Prof. Pap. 1932. № 165. P. 1–199.
  75. Spath L.F. Catalogue of the Fossil Cephalopoda in the British Museum (Natural History). Part 4. Ammonoidea of the Trias. L.: Brit. Mus. (Natur. Hist.), 1934. 521 p.
  76. Song H., Du Y., Algeo T.J. et al. Cooling-driven anoxia across the Smithian–Spathian boundary (mid-Early Triassic) // Earth-Sci. ReV. 2019. V. 195. P. 133–146.
  77. Song H., Wignall P.B., Chu D. et al. Anoxia / high temperature double whammy during the Permian-Triassic marine crisis and its aftermath // Sci. Rep. 2014. № 4. 4132.
  78. Sun Y., Joachimski M.M., Wignall P.B. et al. Lethally hot temperatures during the Early Triassic Greenhouse // Science. 2012. V. 338. P. 366–370.
  79. Tozer E.T. Canadian Triassic ammonoid fauna // Geol. Surv. Canada Bull. 1994. V. 467. P. 1–663.
  80. Vennemann T., Edward O., Luz Z.S. et al. Oxygen isotope compositions and temperatures of early-Triassic seawater: A clumped isotope perspective // Mém Geol. (Lausanne). 2023. № 50. P. 157–158.
  81. Weitschat W., Lehmann U. Biostratigraphy of the upper part of the Smithian stage (Lower Triassic) at theBotneheia, W-Spitsbergen // Mitt. Geol.-Paläontol. Inst., UniV. Hamburg. 1978. № 48. P. 85–100.
  82. Welter O.A. Die Ammoniten der unteren Trias von Timor // Paläontol. Timor. 1922. Bd 11. S. 83–154.
  83. Wignall P.B., Bond D.P.G., Sun Y. et al. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation // Geol. Mag. 2016. V. 153. № 2. P. 316–331.
  84. White C.A. Fossils of the Jura-Trias of southeastern Idaho // Bull. U.S. Geol. Geogr. SurV. Territ. 1879. V. 5. P. 105–117.
  85. White C.A. Contribitions to invetebrate paleontology, 5: Triassic fossils of southeastern Idaho // Bull. U.S. Geol. Geogr. SurV. Territ. 12th Ann. Rep. 1880. № 1. P. 105–118.
  86. Zakharov Y.D., Bondarenko L.G., Popov A.M., Smyshlyaeva O.P. New findings of latest early Olenekian (Early Triassic) fossils in South Primorye, Russian Far East, and their stratigraphical significance // J. Earth Sci. 2021. V. 32. № 3. P. 554–572.
  87. Zakharov Y.D., Bondarenko L.G., Smyshlyaeva O.P., Popov A.M. Late Smithian (Early Triassic) ammonoids from the Anasibirites nevolini Zone of South Primorye, Russian Far East // Bull. New Mexico Mus. Natur. Hist. Sci. 2013a. V. 61. P. 597–612.
  88. Zakharov Y.D., Horacek M., Popov A.M., Bondarenko L.G. Nitrogen and carbon isotope data of Olenekian to Anisian deposits from Kamenushka, South Primorye, Far-Eastern Russia and their palaeoenvironmental significance // J. Earth Sci. 2013b. V. 29. № 4. P. 837–853.
  89. Zakharov Y.D., Horacek M., Popov A.M., Bondarenko L.G., Nitrogen and carbon isotope data of Olenekian to Anisian deposits from Kamenushka, Southern Russia and their palaeoenvironmental significance // J. Earth Sci. 2018. V. 29. № 4 P. 837–853.
  90. Zakharov Y.D., Moussavi Abnavi N. The ammonoid recovery after the end-Permian mass extinction: Evidence from the Iran-Transcaucasia area, Siberia, Primorye, and Kazakhstan // Acta Palaeontol. Pol. 2013. V. 58. № 1. P. 127–147.
  91. Zakharov Y.D., Shkolnik E.L. Permian-Triassic cephalopod facies and global phosphatogenesis // Mem. Géol. (Lausanne). 1994. № 22. P. 171–182.
  92. Zhang L., Orchard M.J., Algeo T.J. et al. An intercalibrated Triassic conodont succession and carbonate carbon isotope profile, Kamura, Japan // Palaeogeogr., Palaeoclimatol., Palaeoecol. 2019a. V. 519. https://doi.org/10.1016/j.palaeo.2017.09.001
  93. Zhang L., Orchard M., Brayard A. et al. The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria // Earth-Sci. ReV. 2019b. V. 195. P. 7–36.
  94. Zhang L., Romaniello S.J., Algeo T.J. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction // Sci. AdV. 2018. V. 4. № 4.
  95. Zhang L., Zhao L., Chen Z.-Q. et al. Amelioration of marine environments at the Smithian–Spathian boundary, Early Triassic // Biogeosciences. 2015. V. 12. P. 1597–1613.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».