Some Morphofunctional Features of the Tail of Early Archosaurs in Relation to Swimming Adaptation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In ancient and modern aquatic and semi-aquatic tetrapods, several types of structure of the locomotor apparatus are presented, providing various styles of swimming. In the course of evolutionary adaptation to swimming, an important role was played by the morphological transformations of the tail, which often performs the main propulsion function. Modern reptiles (except turtles) swim mainly with the help of horizontal tail bends, while mammals swim either vertical or horizontal ones. Among extinct reptiles, Sauropterygia probably used vertical tail mobility when swimming. In most archosauromorphs, the tail became high, laterally compressed, and they swam mainly with the help of its horizontal movements. Among early archosaurs, Proterohampsians and Doswelliids are distinguished by their wide and dorsoventrally flat tails, which may indicate an adaptation to swimming using its vertical mobility.

About the authors

A. G. Sennikov

Borissiak Paleontological Institute, Russian Academy of Sciences

Author for correspondence.
Email: sennikov@paleo.ru
Russia, 117647, Moscow

References

  1. Ивлев Ю.Ф., Кузнецов А.Н., Рутовская М.В. Предварительные данные о кинематике плавания русской выхухоли (Desmana moschata L.) // Докл. Акад. наук. Общ. биол. 2010. Т. 431. № 6. С. 836–840.
  2. Кузнецов А.Н., Терещенко В.С. Методика расчета боковой и вертикальной подвижности между платицельными позвонками у тетрапод // Палеонтол. журн. 2010. № 2. С. 83–99.
  3. Лавров Л.С. Бобры Палеоарктики. Воронеж: Изд-во Воронежского ун-та, 1981. 272 с.
  4. Ламантин. Морфологические адаптации / Ред. В.Е. Соколов. М.: Наука, 1986. 404 с.
  5. Мордвинов Ю.Е. Функциональная морфология плавания птиц и полуводных млекопитающих. Киев: Наук. думка, 1984. 168 с.
  6. Сенников А.Г. Ранние текодонты Восточной Европы. М.: Наука, 1995. 142 с. (Тр. Палеонтол. ин-та РАН. Т. 263).
  7. Сенников А.Г. Особенности строения и локомоторной функции хвоста у завроптеригий // Зоол. журн. 2018. Т. 97. № 8. С. 1041–1054.
  8. Терещенко В.С. К реконструкции позвоночного столба протоцератопса // Палеонтол. журн. 1991. № 2. С. 86–96.
  9. Терещенко В.С. Адаптивная специфика протоцератопоидов (Ornithischia: Neoceratopsia) // Палеонтол. журн. 2008. № 3. С. 50–64.
  10. Arcucci A., Previtera E., Mancuso A.C. Ecomorphology and bone microstructure of Proterochampsia from the Chañares Formation // Acta Palaeontol. Pol. 2019. V. 64. № 1. P. 157–170.
  11. Brown B. The osteology of Champsosaurus Cope // Mem. Amer. Mus. Natur. Hist. 1905. V. 9. № 1. P. 1–26.
  12. Brown B. Corythosaurus casuarius: skeleton, musculature and epidermis. Second paper // Bull. Amer. Mus. Natur. Hist. 1916. V. 35. Art. 38. P. 709–716.
  13. Brown B., Schlaikjer E.M. The skeleton of Leptoceratops with the description of a new species // Amer. Mus. Novit. 1942. № 1169. P. 1–15.
  14. Buchholtz E.A. Implications of vertebral morphology for locomotor evolution in early Cetacea // The Emergence of Whales, Evolutionary Patterns in the Origin of Cetacea / Ed. Thewissen J.G.M. N.Y.: Plenum Press, 1998. P. 325–351.
  15. Buchholtz E.A., Booth A.C., Webbink K.E. Vertebral anatomy in the Florida manatee, Trichechus manatus latirostris: A developmental and evolutionary analysis // The Anatomical Record. 2007. V. 290. № 6. P. 624–637.
  16. Currie P.J. Hovasaurus boulei, an aquatic eosuchian from the Upper Permian of Madagascar // Palaeontol. Africana. 1981. V. 24. P. 99–168.
  17. Erickson B.R. The lepidosaurian reptile Champsosaurus in North America // Monogr. Sci. Mus. Minnesota. 1972. V. 1. (Paleontol.). P. 1–91.
  18. Erickson B.R. Aspects of some anatomical structures of Champsosaurus (Reptilia: Eosuchia) // J. Vertebr. Paleontol. 1985. V. 5. № 2. P. 111–127.
  19. Erickson B.R. Simoedosaurus dakotensis, new species, a diapsid reptile (Archosauromorpha; Choristodera) from the Paleogene of North America // J. Vertebr. Paleontol. 1987. V. 7. № 3. P. 237–251.
  20. Ezquerra R., Doublet S., Costeur L. et al. Were non-avian theropod dinosaurs able to swim? Supportive evidence from an Early Cretaceous trackway, Cameros Basin (La Rioja, Spain) // Geology. 2007. V. 35. № 6. P. 507–510.
  21. Fish F.E. Function of the compressed tail of surface swimming Muskrats (Ondatra zibethicus) // J. Mammalogy. 1982. V. 63. № 4. P. 591–597.
  22. Fish F.E. Association of propulsive swimming mode with behavior in river otters (Lutra canadensis) // J. Mammalogy. 1994. V. 75. № 4. P. 989–997.
  23. Fish F.E., Rybczynski N., George V. et al. The role of the tail or lack thereof in the evolution of tetrapod aquatic propulsion // Integr. and Compar. Biol. 2021. V. 61. № 2. P. 398–413.
  24. Fraas E. Plesiosaurier aus dem oberen Lias von Holzmaden // Palaeontogr. 1910. Bd 57. Lf. 3–4. S. 105–140.
  25. Frey E. Biomechanics of terrestrial locomotion in crocodiles // Konstruktionsprinzipien lebender und ausgestorbener Reptilien: Konzepte SF B230. Stuttgart, 1985. H. 4. S. 145–169.
  26. Frey E. Das Tragsystem der Krokodile – eine biomechanische und phylogenetische Analyse // Stuttg. Beitr. Naturk. Ser. A. 1988. № 26. S. 1–60.
  27. Frey E., Mulder E.W.A., Stinnesbeck W. et al. A new polycotylid plesiosaur with extensive soft tissue preservation from the early Late Cretaceous of northeast Mexico // Bol. Soc. Geol. Mexicana. 2017. V. 69. № 1. P. 87‒134.
  28. Gregory W.K. Evolution Emerging. V. 2. N.Y.: The Macmillan co., 1951. 1014 p.
  29. Heckert A.B., Viner T.C., Carrano M.T. A large, pathological skeleton of Smilosuchus gregorii (Archosauriformes: Phytosauria) from the Upper Triassic of Arizona, U.S.A., with discussion of the paleobiological implications of paleopathology in fossil archosauromorphs // Palaeontol. Electron. 2021. V. 24. № 2. Iss. a21. P. 1‒36.
  30. Howell A.B. The swimming mechanism of the Platypus // J. Mammalogy. 1937. V. 18. № 2. P. 217‒222.
  31. Ibrahim N., Maganuco S., Dal Sasso C. et al. Tail-propelled aquatic locomotion in a theropod dinosaur // Nature. 2020. V. 581. № 7806. P. 67‒70.
  32. Li C.,Wu X.-C., Cheng Y.-N. et al. An unusual archosaurian from the marine Triassic of China // Naturwiss. 2006. V. 93. № 4. P. 200–206.
  33. Li C., Wu X.-C., Zhao L.-J. et al. A new armored archosauriform (Diapsida: Archosauromorpha) from the marine Middle Triassic of China, with implications for the diverse life styles of archosauriforms prior to the diversification of Archosauria // Sci. Natur. 2016. V. 103. № 95. P. 1–23.
  34. Lindgren J., Caldwell M.W., Konishi T., Chiappe L.M. Convergent evolution in aquatic tetrapods: insights from an exceptional fossil mosasaur // PLoS ONE. 2010. V. 5. № 8. P. 1–10. e11998.
  35. Lindgren J., Kaddumi H.F., Polcyn M.J. Soft tissue preservation in a fossil marine lizard with a bilobed tail fin // Nature Commun. 2013. V. 4. № 2423. P. 1–8.
  36. Madsen J.H. Allosaurus fragilis: a revised osteology // Bull. Utah Geol. Miner. Surv. 1976. V. 109. P. 1–163.
  37. Matsumoto R., Suzuki S., Tsogtbaatar K., Evans S.E. New material of the enigmatic reptile Khurendukhosaurus (Diapsida: Choristodera) from Mongolia // Naturwiss. 2009. V. 96. № 2. P. 233–242.
  38. McMenamin M.A.S. Permian aquatic reptiles // Preprints. 2019. 2019080033 (doi: ). P. 1–10.https://doi.org/10.20944/preprints201908.0033.v1
  39. Motani R. Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints // Ann. Rev. Earth Planet. Sci. 2005. V. 33. P. 395–420.
  40. Nesbitt S.J., Stocker M.R., Small B.J., Downs A. The osteology and relationships of Vancleavea campi (Reptilia: Archosauriformes) // Zool. J. Linn. Soc. London. 2009. V. 157. P. 814–864.
  41. Otero R.A., Soto-Acuna S., Frank R.O., Keefe F.R. Osteology of Aristonectes quiriquinensis (Elasmosauridae, Aristonectinae) from the Upper Maastrichtian of Central Chile // J. Vertebr. Paleontol. 2018. V. 38. № 1. P. 1–19. e1408638.
  42. Pinna G., Nosotti S. Anatomia, morfologia funzionale e paleoecologia del rettile Placodonte, Psephoderma alpinum Meyer, 1858 // Mem. Soc. Ital. Sci. Natur., Mus. Civ. Sci. Natur. Milano. 1989. V. 25. P. 17–49.
  43. Renesto S. A new specimen of Tanystropheus (Reptilia, Protorosauria) from the Middle Triassic of Switzerland and the ecology of the genus // Riv. Ital. Paleontol. Stratigr. 2005. V. 111. № 3. P. 377–394.
  44. Renesto S., Saller F. Evidences for a semiaquatic life style in the Triassic diapsid reptile Tanystropheus // Riv. Ital. Paleontol. Stratigr. 2018. V. 124. № 1. P. 23–34.
  45. Renesto S., Tintori A. Functional morphology and mode of life of the Late Triassic placodont Psephoderma alpinum Meyer from the Calcare di Zorzino (Lombardy, N. Italy) // Riv. Ital. Paleontol. Stratigr. 1995. V. 101. № 1. P. 37–48.
  46. Romer A.S. The Chanares (Argentina) Triassic reptile fauna. XII. The postcranial skeleton of the thecodont Chanaresuchus // Breviora. 1972. № 385. P. 1–21.
  47. Russell L.S. The Cretaceous reptile Champsosaurus natator Parks // Bull. Nat. Mus. Canada. 1956. V. 145. P. 1–25.
  48. Sachs S., Hornung J.J., Kear B.P. Reappraisal of Europe’s most complete Early Cretaceous plesiosaurian: Brancasaurus brancai Wegner, 1914 from the “Wealden facies” of Germany // PeerJ. 2016. № 4. P. 1–79. e2813. https://doi.org/10.7717/peerj.2813
  49. Sander P.M. Ichthyosauria: their diversity, distribution, and phylogeny // Palӓontol. Z. 2000. Bd 74. № 1–2. P. 1–35.
  50. Scheyer T.M., Neenan J.M., Bodogan T. et al. A new, exceptionally preserved juvenile specimen of Eusaurosphargis dalsassoi (Diapsida) and implications for Mesozoic marine diapsid phylogeny // Sci. Rep. 2017. V. 7. № 4406. P. 1–22.
  51. Schwarz-Wings D., Frey E., Martin T. Reconstruction of the bracing system of the trunk and tail in hyposaurine dyrosaurs (Crocodylomorpha; Mesoeucrocodylia) // J. Vertebr. Paleontol. 2009. V. 29. № 2. P. 453–472.
  52. Sennikov A.G. New data on the herpetofauna of the Early Triassic Donskaya Luka locality, Volgograd Region // Paleontol. J. 2015. V. 49. № 11. P. 1161–1173.
  53. Sennikov A.G. Peculiarities of the structure and locomotor function of the tail in Sauropterygia // Biol. Bull. 2019. V. 46. № 7. P. 97–108.
  54. Shang Q.-H., Wu X.-Ch., Lia Ch. New Ladinian nothosauroid (Sauropterygia) from Fuyuan, Yunnan Province, China // J. Vertebr. Paleontol. 2020. V. 40. № 3. P. 1–18.
  55. Sill W.D. Proterochampsa barrionuevoi and the early evolution of the Crocodilia // Bull. Mus. Compar. Zool. 1967. V. 135. № 8. P. 415–446.
  56. Taquet P. Géologie et Paléontologie du Gisement de Gadoufaoua (Aptien du Niger). P.: Ed. du Centre National de la Recherque Scientifique, 1976. 191 p.
  57. Thewissen J.G.M., Fish F.E. Locomotor evolution in the earliest cetaceans: functional model, modern analogues and paleontological evidence // Paleobiology. 1997. V. 23. № 4. P. 482–490.
  58. Trotteyn M.A., Arcucci A.A., Raugust T. Proterochampsia: an endemic archosauriform clade from South America // Geol. Soc. London, Spec. Publ. 2013. V. 379. P. 59–90.
  59. Weems R.E. An unusual newly discovered archosaur from the Upper Triassic of Virginia, U.S.A. // Trans. Amer. Phil. Soc. New Ser. 1980. V. 70. № 7. P. 1–53.
  60. Wegner T. Brancasaurus brancai n.g. n.sp., ein Elasmosauridae aus dem Wealden Westfalens // Branca-Festschrift. Gebrüda Bornträga / Ed. Schoendorf F. Berlin, 1914. S. 235–305.
  61. Wilhelm B.C. Novel anatomy of cryptoclidid plesiosaurs with comments on axial locomotion. A Thesis submitted to the Graduate College of Marshall University. Huntington: Marshall Univ., 2010. P. 1–70.
  62. Williston S.W. Water reptiles of the past and present. Chicago: Univ. Chicago Press, 1914. 251 p.
  63. Xing L.D., Lockley M.G., Zhang J.P. et al. A new Early Cretaceous dinosaur track assemblage and the first definite non-avian theropod swim trackway from China // China Sci. Bull. 2013. V. 58. № 19. P. 2370–2378.
  64. Xing L., Klein H., Lockley M.G. et al. Footprints of marine reptiles from the Middle Triassic (Anisian-Ladinian) Guanling Formation of Guizhou Province, southwestern China: The earliest evidence of synchronous style of swimming // Palaeogeogr., Palaeoclimatol., Palaeoecol. 2020. V. 558. 109943. P. 1–20.
  65. Young M.T., Brusatte S.L., Ruta M., Andrade M.B. The evolution of Metriorhynchoidea (Mesoeucrocodylia: Thalattosuchia): an integrated approach using geometric morphometrics, analysis disparity and biomechanics // Zool. J. Linn. Soc. 2010. V. 158. № 4. P. 801–859.
  66. Zhang Q., Wen W., Shixue H. et al. Nothosaur foraging tracks from the Middle Triassic of southwestern China // Nature Commun. 2014. V. 5. Iss. 3973. P. 1–12.

Copyright (c) 2023 А.Г. Сенников

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies