Resonant transfer of one- and two-photon excitations in quantum dot–bacteriorhodopsin complexes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Light-sensitive protein bacteriorhodopsin (BR), which is capable of electrical response upon exposure to light, is a promising material for photovoltaics and optoelectronics. However, the rather narrow absorption spectrum of BR does not allow achieving efficient conversion of the light energy in the blue and infrared spectral regions. This paper summarizes the results of studies showing the possibility of extending the spectral region of the BR function by means of the Förster resonance energy transfer (FRET) from CdSe/ZnS quantum dots (QDs), which have a broad spectrum of one-photon absorption and a large twophoton absorption cross section (TPACS), to BR upon one- and two-photon excitation. In particular, it is shown that, on the basis of QDs and BR-containing purple membranes, it is possible to create electrostatically associated bio-nano hybrid systems in which FRET is implemented. In addition, the large TPACS of QDs, which is two orders of magnitude larger than those of BR and organic dyes, opens up a means for selective two-photon excitation of synthesized bio-nano hybrid complexes. On the basis of the results of this work, the spectral region in which BR converts the light energy into electrical energy can be extended from the UV to near-IR region, creating new opportunities for the use of this material in photovoltaics and optoelectronics.

About the authors

V. A. Krivenkov

National Research Nuclear University MEPhI

Author for correspondence.
Email: vkrivenkov@list.com
Russian Federation, Moscow, 115409

P. S. Samokhvalov

National Research Nuclear University MEPhI

Email: vkrivenkov@list.com
Russian Federation, Moscow, 115409

R. S. Bilan

National Research Nuclear University MEPhI

Email: vkrivenkov@list.com
Russian Federation, Moscow, 115409

A. A. Chistyakov

National Research Nuclear University MEPhI

Email: vkrivenkov@list.com
Russian Federation, Moscow, 115409

I. R. Nabiev

National Research Nuclear University MEPhI; University of Reims, Champagne-Ardenne

Email: vkrivenkov@list.com
Russian Federation, Moscow, 115409; Reims, 51100

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.