Observations of Tsunami Waves on the Pacific Coast of Russia Originating from the Hunga Tonga-Hunga Ha'apai Volcanic Eruption on January 15, 2022

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Hunga Tonga-Hunga Ha´apai volcanic eruption on January 15, 2022 generated a tsunami that affected the entire Pacific Ocean. Tsunami from the event have been generated both by incoming waves from the source area, with a long-wave speed in the ocean of ~ 200–220 m/s, and by an atmospheric wave propagating at a sound speed ~315 m/s. Such a dual source mechanism created a serious problem and was a real challenge for the Pacific tsunami warning services. The work of the Russian Tsunami Warning Service (Yuzhno-Sakhalinsk) during this event is considered in detail. The tsunami was clearly recorded on the coasts of the Northwest Pacific and in the adjacent marginal seas, including the Sea of Japan, the Sea of Okhotsk and the Bering Sea. We examined high-resolution records (1-min sampling) of 20 tide gauges and 8 air pressure stations in this region for the period of January 14–17, 2022. On the Russian coast, the highest waves, with a trough-to-crest wave height of 1.3 m, were recorded at Malokurilskoe (Shikotan Island) and Vodopadnaya (the southeastern coast of Kamchatka). Using numerical simulation and data analysis methods, we were able to separate the oceanic “gravity” tsunami waves from propagating atmospheric pressure waves. In general, we found that on the outer (oceanic) coasts and the southern coast of the Sea of Okhotsk, oceanic tsunami waves prevailed, while on the coast of the Sea of Japan, oceanic and atmospheric tsunami waves had similar heights.

作者简介

I. Medvedev

Shirshov Institute of Oceanology, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: patamates@gmail.com
俄罗斯联邦, Moscow

T. Ivelskaya

Tsunami Warning Center, Sakhalin Administration for Hydrometeorology and Environmental Monitoring

Email: patamates@gmail.com
俄罗斯联邦, Yuzhno-Sakhalinsk

A. Rabinovich

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: patamates@gmail.com
俄罗斯联邦, Moscow

E. Tsukanova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: patamates@gmail.com
俄罗斯联邦, Moscow

A. Medvedeva

Shirshov Institute of Oceanology, Russian Academy of Sciences; Lomonosov Moscow State University

Email: patamates@gmail.com
俄罗斯联邦, Moscow; Moscow

参考

  1. Баранов Б.В., Лобковский Л.И., Куликов Е.А. и др. Оползни на восточном склоне о. Сахалин как источники возможных цунами // Доклады Академии наук. 2013. Т. 449. № 3. С. 334–337.
  2. Зайцев А.И., Пелиновский Е.Н., Долгих Г.И., Долгих С.Г. Регистрация возмущений в Японском море, вызванные извержением вулкана Хунга-Тонга-Хаапай в архипелаге Тонга 15.01.2022 // Доклады Российской академии наук. Науки о Земле. 2022. Т. 506. № 2. С. 259–264.
  3. Иванова А.А., Куликов Е.А., Файн И.В., Баранов Б.В. Генерация цунами подводным оползнем вблизи восточного побережья о. Сахалин // Вестник Московского университета. Серия 3: Физика. Астрономия. 2018. № 2. С. 111–116.
  4. Ким Х.С., Рабинович А.Б. Цунами на северо-западном побережье Охотского моря / В Сб.: “Природные катастрофы и стихийные бедствия в Дальневосточном регионе”, Южно-Сахалинск, ИМГиГ ДВНЦ АН СССР. 1990. Т. 1. С. 206–218.
  5. Ковалев Д.П., Ковалев П.Д., Хузеева М.О. Сейши, вызываемые атмосферными возмущениями в диапазоне периодов метеоцунами, у побережья южной половины острова Сахалин // Морской гидрофизический журнал. 2020. Т. 36. № 4. С. 437–450. https://doi.org/10.22449/0233-7584-2020-4-437-450
  6. Куликов Е.А., Рабинович А.Б., Файн И.В. и др. Генерация цунами оползнями на тихоокеанском побережье Северной Америки и роль приливов в этом процессе // Океанология. 1998. Т. 38. № 1. С. 361–367.
  7. Левин Б.В., Носов М.А. Физика цунами и родственных явлений в океане. М.: Янус-К, 2005. 360 с.
  8. Лобковский Л.И., Рабинович А.Б., Куликов Е.А. и др. Курильские землетрясения и цунами 15 ноября 2006 г. и 13 января 2007 г. (наблюдения, анализ и численное моделирование) // Океанология. 2009. Т. 49. № 2. С. 181–197.
  9. Мурти Т. Сейсмические морские волны цунами. Л.: Гидрометеоиздат, 1981. 447 с.
  10. Смирнова Д.А., Медведев И.П. Экстремальные колебания уровня Японского моря, вызванные прохождением тайфунов Майсак и Хайшен в сентябре 2020 г. // Океанология. 2023. Т. 63. № 5. С. 718–732. https://doi.org/10.31857/S0030157423050179
  11. Смышляев А. Время красной рыбы. Петропавловск-Камчатский: Новая книга, 2003. 426 с.
  12. Соловьев С.Л., Го Ч.Н. Каталог цунами на западном побережье Тихого океана. М.: Наука, 1974. 310 c.
  13. Шевченко Г.В., Ивельская Т.Н. Цунами и другие опасные морские явления в портах Дальневосточного региона России (по инструментальным измерениям). Южно-Сахалинск, Институт морской геологии и геофизики ДВО РАН, 2013. 44 с.
  14. Шевченко Г.В., Ивельская Т.Н., Кайстренко В.М. Цунами 5 ноября 1952 г. в Северо-Курильске и его эхо в последующие 70 лет // Природа. 2022. № 4. С. 12–26.
  15. Adam D. Tonga volcano eruption created puzzling ripples in Earth’s atmosphere // Nature. 2022. V. 601. № 497. https://doi.org/10.1038/d41586-022-00127-1
  16. Amores A., Monserrat S., Marcos M. et al. Numerical simulation of atmospheric Lamb waves generated by the 2022 Hunga-Tonga volcanic eruption // Geophysical Research Letters. 2022. V. 49, e2022GL098240. https://doi.org/10.1029/2022GL098240
  17. Brenna M., Cronin S.J., Smith I.E.M. et al. Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga volcano, Tonga, SW Pacific // Lithos. 2022. V. 412–413. № 106614. https://doi.org/10.1016/j.lithos.2022.106614
  18. Carvajal M., Sepúlveda I., Gubler A., Garreaud R. Worldwide signature of the 2022 Tonga volcanic tsunami // Geophysical Research Letters. 2022. V. 49. № 6, e2022GL098153. https://doi.org/10.1029/2022GL098153
  19. Chen C.-H., Zhang X., Sun Y.-Y. et al. Individual wave propagations in ionosphere and troposphere triggered by the Hunga Tonga-Hunga Ha’apai underwater volcano eruption on 15 January 2022 // Remote Sens. 2022. V. 14. Issue 9. https://doi.org/10.3390/rs14092179
  20. Dengler L, Uslu B., Barberopoulou A. et al. The vulnerability of Crescent City, California, to tsunamis generated by earthquakes in the Kuril Islands region of the northwestern Pacific // Seismol. Res. Lett. 2008. V. 79. № 5. P. 608–619.
  21. Duncombe J. The surprising reach of Tonga’s giant atmospheric waves // Eos. 2022. V. 103. https://doi.org/10.1029/2022EO220050
  22. Ewing M., Press F. Tide-gage disturbances from the great eruption of Krakatoa // Transactions, American Geophysical Union. 1955. V. 36. № 1. P. 53–60.
  23. Fine I.V., Thomson R.E. A wavefront orientation method for precise numerical determination of tsunami travel time // Natural Hazards and Earth System Sciences. 2013. V. 13. № 11. P. 2863–2870. https://doi.org/10.5194/nhess-13-2863-2013.
  24. Garrett C.J.R. A theory of the Krakatoa tide gauge disturbances // Tellus. 1970. V. 22. P. 43–52.
  25. Gusiakov V.K. Global occurrence of large tsunamis and tsunami-like waves within the last 120 years (1900–2019) // Pure Appl. Geophys. 2020. V. 177. P. 1261–1266. https://doi.org/10.1007/s00024-020-02437-9
  26. Gusiakov V.K. Meteotsunamis at global scale: Problems of event identification, parameterization and cataloguing // Natural Hazards. 2021. V. 106. P. 1105–1123. https://doi.org/10.1007/s11069-020-04230-2
  27. Harkrider D., Press F. The Krakatoa air-sea waves: An example of pulse propagation in coupled systems // Geophys. J. Roy. Astr. Soc. 1967. V. 13. P. 149–159.
  28. Heidarzadeh M., Rabinovich A.B. Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan // Natural Hazards. 2021. V. 106. № 2. P. 1639–1672. https://doi.org/10.1007/s11069-020-04448-0
  29. Heidarzadeh M., Šepić J., Rabinovich A.B. et al. Meteorological tsunami of 19 March 2017 in the Persian Gulf: Observations and analyses // Pure Appl. Geophys. 2020. V. 177. № 3. P. 1231–1259. https://doi.org/10.1007/s00024-019-02263-8
  30. Heinrich P., Gailler A., Dupont A. et al. Observations and simulations of the meteotsunami generated by the Tonga eruption on 15 January 2022 in the Mediterranean Sea // Geophysical Journal International. 2023. V. 234. № 2. P. 903–914.
  31. Hu G., Li L., Ren Z., Zhang K. The characteristics of the 2022 Tonga volcanic tsunami in the Pacific Ocean // Natural Hazards and Earth System Sciences. 2023. V. 23. P. 675–691. https://doi.org/10.5194/nhess-23-675-2023
  32. Imamura F., Suppasri A., Arikawa T. et al. Preliminary observations and impact in Japan of the tsunami caused by the Tonga volcanic eruption on January 15, 2022 // Pure Appl. Geophys. 2022. V. 179. № 5. https://doi.org/10.1007/s00024-022-030xx-x
  33. Kong L.S.L, Dunbar P.K., Arcos N. (Eds.), Pacific Tsunami Warning System: A Half-Century of Protecting the Pacific, 1965–2015, Honolulu, International Tsunami Information Center, 2015. 188 p.
  34. Kubota T., Saito T., Nishida K. Global fast-traveling tsunamis driven by atmospheric Lamb waves on the 2022 Tonga eruption // Science. 2022. V. 377. № 6601. P. 91–94. https://doi.org/10.1126/science.abo4364
  35. Kulichkov S.N., Chunchuzov I.P., Popov O.E. et al. Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano, its energy release and impact on aerosol concentrations and tsunami // Pure Appl. Geophys. 2022. V. 179. № 5. https://doi.org/10.1007/s00024-022-03046-4
  36. Kusky T.M. Déjà vu: Might future eruptions of Hunga Tonga-Hunga Ha’apai volcano be a repeat of the devastating eruption of Santorini, Greece (1650 BC)? // Journal of Earth Science. 2022. V. 33. № 2. P. 229–235. https://doi.org/10.1007/s12583-022-1624-2
  37. Lynett P., McCann M., Zhou Z. et al. Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption // Nature. 2022. V. 609. № 7928. P. 728–733. https://doi.org/10.1038/s41586-022-05170-6
  38. Matoza R.S., Fee D., Assink J.D. et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga // Science. 2022. V. 377. № 6601. P. 95–100. https://doi.org/10.1126/science.abo7063
  39. Medvedev I.P., Rabinovich A.B., Šepić J. Destructive coastal sea level oscillations generated by Typhoon Maysak in the Sea of Japan in September 2020 // Scientific Reports. 2022. V. 12. № 8463. https://doi.org/10.1038/s41598-022-12189-2
  40. Medvedeva A., Medvedev I., Fine I. et al. Local and trans-oceanic tsunamis in the Bering and Chukchi seas based on numerical modeling // Pure Appl. Geophys. 2023. V. 180. P. 1639–1659. https://doi.org/10.1007/s00024-023-03251-9
  41. Monserrat S., Vilibić I., Rabinovich A.B. Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band // Natural Hazards and Earth System Sciences. 2006. V. 6. № 6. P. 1035–1051. https://doi.org/10.5194/nhess-6-1035-2006
  42. Omira R., Ramalho R.S., Kim J. et al. Global Tonga tsunami explained by a fast-moving atmospheric source // Nature. 2022. V. 609. № 7928. P. 734–740. https://doi.org/10.1038/s41586-022-04926-4
  43. Pararas-Caraynnis G. The tsunami generated from the eruption of the volcano of Santorin in the Bronze Age // Natural Hazards. 1992. V. 5. № 2. P. 115–123. https://doi.org/10.1007/BF00127000
  44. Pelinovsky E., Choi B.H., Stromkov A. et al. Analysis of tide-gauge records of the 1883 Krakatau tsunami / In: K. Satake (Eds.) Tsunamis: Case Studies and Recent Developments. Dordrecht, Springer, 2005. P. 57–78; https://doi.org/10.1007/1-4020-3331-1_4
  45. Press F., Harkrider D. Air-sea waves from the explosion of Krakatoa // Science. 1966. V. 154. P. 1325–1327.
  46. Rabinovich A.B. Twenty-seven years of progress in the science of meteorological tsunamis following the 1992 Daytona Beach event // Pure Appl. Geophys. 2020. V. 177. № 3. P. 1193–1230. https://doi.org/10.1007/s00024-019-02349-3
  47. Rabinovich A.B. (Ed.). Two 2018 Destructive Indonesian Tsunamis: Palu (Sulawesi) and Anak Krakatau, Basel: Springer, 2022. 442 p.
  48. Ramírez-Herrera M.T., Coca O., Vargas-Espinosa V. Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha’apai volcano eruption, Tonga // Pure Appl. Geophys. 2022. V. 179. № 4. P. 1117–1137. https://doi.org/10.1007/s00024-022-03017-9
  49. Tanioka Y., Yamanaka Y., Nakagaki T. Characteristics of the deep-sea tsunami excited offshore Japan due to the air wave from the 2022 Tonga eruption // Earth, Planets and Space. 2022. V. 74. № 61. https://doi.org/10.1186/s40623-022-01614-5
  50. Themens D.R., Watson C., Žagar N. et al. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption // Geophysical Research Letters. 2022. V. 49. e2022GL098158. https://doi.org/10.1029/2022GL098158
  51. Tsukanova E., Medvedev I. The observations of the 2022 Tonga-Hunga tsunami waves in the Sea of Japan // Pure Appl. Geophys. 2022. V. 179. № 12. P. 4279–4299. https://doi.org/10.1007/s00024-022-03191-w
  52. Vilibić I., Domijan N., Orlić M. et al. Resonant coupling of a traveling air pressure disturbance with the east Adriatic coastal waters // Journal of Geophysical Research: Oceans. 2004. V. 109. № C10001. https://doi.org/10.1029/2004JC002279
  53. Vilibić I., Rabinovich A.B., Anderson E.J. Special issue on the global perspective on meteotsunami science: editorial // Natural Hazards. 2021. V. 106. № 2. P. 1087–1104. https://doi.org/10.1007/s11069-021-04679-9
  54. Vilibić I., Šepić J., Rabinovich A., Monserrat S. Modern approaches in meteotsunami research and early warning // Frontiers in Marine Science. 2016. V. 3. № 57. P. 1–7. https://doi.org/10.3389/fmars.2016.00057
  55. Wilson R.I., Admire A.R., Borrero J.C. et al. Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA) // Pure Appl. Geophys. 2013. V. 170. № 6–8. P. 1127–1147.
  56. Wright C.J., Hindley N.P., Alexander M.J. et al. Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption // Nature. 2022. V. 609. P. 741–746. https://doi.org/10.1038/s41586-022-05012-5
  57. Zhang S.-R., Vierinen J., Aa E. et al. Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves // Frontiers in Astronomy and Space Sciences. 2022. V. 9. https://doi.org/10.3389/fspas.2022.871275

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##