Concentration and Fluorescence of Chlorophyl a in the Atlantic Sector of Antarctic

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The studies were carried out in cruise 79 of the R/V Akademik Mstislav Keldysh. The variability of the chlorophyll a specific light absorption coefficient of phytoplankton and the coefficient of correlation between the fluorescence intensity and chlorophyll a concentration at various optical depths under basic lighting conditions and after dark adaptation was studied. It is shown that in the absence of water stratification, there is no vertical variability in the chlorophyll a specific light absorption coefficient of phytoplankton. It was found that when measuring the intensity of chlorophyll a fluorescence with a submersible sensor, without preliminary dark adaptation, a decrease in the fluorescence intensity signal in the upper layer of water is observed, which is associated with the effect of illumination on the fluorescence quantum yield.

Sobre autores

N. Moiseeva

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Autor responsável pela correspondência
Email: moiseeva@ibss-ras.ru
Russia, Sevastopol

T. Churilova

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: moiseeva@ibss-ras.ru
Russia, Sevastopol

Т. Efimova

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: moiseeva@ibss-ras.ru
Russia, Sevastopol

Е. Skorokhod

A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS

Email: moiseeva@ibss-ras.ru
Russia, Sevastopol

V. Artemiev

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: moiseeva@ibss-ras.ru
Russia, Moscow

A. Iushmanova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: moiseeva@ibss-ras.ru
Russia, Moscow

Bibliografia

  1. Antal T., Konyukhov I., Volgusheva A. et al. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors // Physiologia plantarum. 2019. V. 165. № 3. P. 476–486.
  2. Babin M., Morel A., Gentili B. Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence // International Journal of Remote Sensing. 1996. V. 17. № 12. P. 2417–2448.
  3. Babin M. Phytoplankton fluorescence: theory. current literature and in situ measurement // Real-time Coastal Observing Systems for Marine Ecosystem Dynamics and Harmful Algal Blooms: Theory. Instrumentation and Modelling. Paris: UNESCO Publishing, 2008. P. 237–280.
  4. Baker N.R. Chlorophyll fluorescence: a probe of photosynthesis in vivo // Annual review of plant biology. 2008. V. 59. P. 89.
  5. Boss E., Haëntjens N., Ackleson S.G. et al. IOCCG Ocean optics and biogeochemistry protocols for satellite ocean colour sensor validation inherent optical property measurements and protocols: best practices for the collection and processing of ship-based underway flow-through optical data (v4. 0). 2019.
  6. Bricaud A., Babin M., Morel A., Claustre H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization // Journal of Geophysical Research: Oceans. 1995. V. 100. Iss. C7. P. 13 321–13 332.
  7. Churilova T., Suslin V., Krivenko O. et al. Light absorption by phytoplankton in the upper mixed layer of the Black Sea: seasonality and parameterization // Frontiers in Marine Science. 2017. V. 4. P. 90.
  8. Churilova T., Moiseeva N., Efimova T. et al. Spectral bio-optical properties of waters in the Bransfield Strait and Powell Basin // Antarctic Peninsula Region of the Southern Ocean. Springer: Cham, 2021. P. 217–228.
  9. Ciotti A.M., Lewis M.R., Cullen J.J. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient // Limnology and Oceanography. 2002. V. 47. № 2. P. 404–417.
  10. Collins D.J., Kiefer D.A., Soohoo J.B., McDermid I.S. The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission // Deep Sea Research Part A. Oceanographic Research Papers. 1985. V. 32. № 8. P. 983–1003.
  11. Cullen J.J., Lewis M.R. The kinetics of algal photoadaptation in the context of vertical mixing // Journal of Plankton Research. 1988. V. 10. № 5. P. 1039–1063.
  12. de Boyer M.C., Madec G., Fischer A. S. et al. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology // Journal of Geophysical Research: Oceans. 2004. V. 109. C12003. 20 p.
  13. Falkowski P., Kiefer. D.A. Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass // Journal of Plankton Research. 1985. V. 7. № 5. P. 715–731.
  14. Falkowski P.G., Raven J.A. Aquatic photosynthesis, 2nd. ed. Princeton: Princeton University Press, 2007. 512 p.
  15. Huot Y., Babin M. Overview of fluorescence protocols: theory, basic concepts, and practice // Chlorophyll a fluorescence in aquatic sciences: Methods and applications: Springer, 2010. P. 31–74.
  16. Jeffrey S.W., Humphrey G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochemie und physiologie der pflanzen. 1975. V.167. № 2. P. 191–194.
  17. Kirk J.T.O. Light and photosynthesis in aquatic ecosystems. Third edition. Cambridge: Cambridge University Press, 2011. 649 p.
  18. Kishino M., Takahashi N., Okami N., Ichimura S. Estimation of the spectral absorption coefficients of phytoplankton in the sea // Bulletin of Marine Science. 1985. V. 37. P. 634–642.
  19. Kolber Z., Falkowski P.G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ // Limnology and Oceanography. 1993. V. 38. № 8. P. 1646–1665.
  20. Krause G.H., Vernotte C., Briantais J.M. Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components // Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1982. V. 679. № 1. P. 116–124.
  21. Krause G.H., Jahns P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: characterization and function // Chlorophyll a fluorescence: Springer, 2004. P. 463–495.
  22. MacIntyre H.L., Kana T.M., Anning J., Geider R. Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria // Journal of Phycology. 2002. V. 38. № 1. P. 17–38.
  23. Masojídek J., Torzillo G., Koblížek M. et al. Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle // Planta. 1999. V. 209. № 1. P. 126–135.
  24. Maxwell K., Johnson G.N. Chlorophyll fluorescence – a practical guide // Journal of experimental botany. 2000. V. 51. № 345. P. 659–668.
  25. Morel A., Bricaud A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton // Deep Sea Research Part A. Oceanographic Research Papers. 1981. V. 28. № 11. P. 1375–1393.
  26. Morozov E.G., Flint M.V., Spiridonov V.A. (eds) Antarctic Peninsula Region of the Southern Ocean. Springer, Cham. 2021. 455 p.
  27. Morrison J.R. In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: A simple algorithm, observations, and a model // Limnology and Oceanography. 2003. V. 48. № 2. P. 618–631.
  28. Muller P., Li X.P., Niyogi K.K. Non-photochemical quenching. A response to excess light energy // Plant physiology. 2001. V. 125. № 4. P. 1558–1566.
  29. Neeley A.R., Mannino A. Ocean optics and biogeochemistry protocols for satellite ocean colour sensor validation (v. 1. 0). Inherent Optical Property Measurements and Protocols: Absorption Coefficient. 2018.
  30. Schmechtig C., Poteau A., Claustre H. et al. Processing bio-Argo chlorophyll-A concentration at the DAC level. Version 1.0. 30 September 2015. 2015.
  31. S tepanova S.V., Polukhin A.A., Borisenko G.V. et al. Hydrochemical structure of waters in the Northern Weddell Sea in Austral summer 2020 // Antarctic Peninsula region of the southern ocean. Springer, 2021. P. 159–174.
  32. Strasser R.J., Alaka Srivastava, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples // Probing photosynthesis: mechanisms, regulation and adaptation. 2000. P. 445–483.
  33. Suggett D.J., Prášil O., Borowitzka M.A. Chlorophyll a Fluorescence in aquatic sciences: methods and applications. Springer, 2010. 323 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (2KB)
4.

Baixar (120KB)
5.

Baixar (202KB)
6.

Baixar (152KB)
7.

Baixar (191KB)

Declaração de direitos autorais © Н.А. Моисеева, Т.Я. Чурилова, Т.В. Ефимова, Е.Ю. Скороход, В.А. Артемьев, А.В. Юшманова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies