Heterogeneity of Spatial Distribution and Functional Role of Phototrophic Picoplankton in the Kara Sea in Mid-Summer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spatial distribution of picophytoplankton (Pico) biomass and chlorophyll “a” (Chl) Pico, as well as the contribution of Pico to the total Chl and primary production (PP) were investigated in the north-western, southern, and western areas of the Kara Sea in the second decade of July 2019. The integrated Pico biomass was 159.3 ± 103.5 mg C/m2 in the north-western area. The integrated Pico biomass was significantly lower (p = 0.001), averaging 57.1 ± 15.9 mg C/m2 in the southern and western parts of the sea. The largest contribution of Pico to the total Chl was found in the subsurface chlorophyll maximum (up to 75%) in the north-eastern region of the sea; in the other areas of the sea, the maximum Pico contribution was found in the surface layer, averaging 28% for the southern region and 53% for the northern region. Total PP and Pico PP ranged from 0.97 to 123.3 mg C/m3 per day and 0.2 to 33.99 mg C/m3 per day, respectively. The average contribution of Pico to total PP was 26% in the western part of the sea, 30% in the southern part, and more than 40% in the north-western parts of the sea. Pico was dominated by picoeukaryotes; the contribution of cyanobacteria to the total Pico biomass did not exceed 6%. The spatial heterogeneity of Pico distribution was determined by the hydrological characteristics of the studied areas.

About the authors

T. A. Belevich

Moscow State University

Email: 3438083@list.ru
Moscow, Russia

A. B. Demidov

Shirshov Institute of Oceanology Russian Academy of Sciences

Moscow, Russia

O. V. Vorob’eva

Moscow State University; Russian Federal Research Institute of Fisheries and Oceanography

Moscow, Russia; Moscow, Russia

M. V. Flint

Shirshov Institute of Oceanology Russian Academy of Sciences

Moscow, Russia

References

  1. Белевич Т.А., Ильяш Л.В., Демидов А.Б., Флинт М.В. Распределение пикофитопланктона на Обском разрезе и в западной части Карского моря // Океанология. 2019. Т. 59. С. 964–973.
  2. Белевич Т.А., Милютина И.А., Демидов А.Б., Флинт М.В. Весенний пикофитопланктон Карского моря // Океанология. 2022. Т. 62. С. 743–753.
  3. Белевич Т.А., Милотина Н.А., Троицкий А.В., Флинт М.В. Пикофитопланктон залива Благополучия (архипелаг Новая Земля) и прилегающего района Карского моря // Океанология. 2020. Т. 60. С. 545–555.
  4. Демидов А.Б., Гагарин В.И., Еремеева Е.В. и др. Вертикальная изменчивость первичной продукции и хлорофилла в Карском море в середине лета: вклад подповерхностных максимумов в интегральные величины // Океанология. 2021. Т. 61. С. 737–752.
  5. Демидов А.Б., Сергеева В.М., Гагарин В.И. и др. Первичная продукция и хлорофилл размерных групп фитопланктона Карского моря в период схода сезонного льда // Океанология. 2022. Т. 62. С. 403–415.
  6. Добровольский А.Д., Залогин Б.С. Моря СССР. М.: Изд-во МГУ, 1982. 192 с.
  7. Мошаров С.А., Демидов А.Б., Симакова У.В. Особенности процессов первичного продуцирования в Карском море в конце вегетационного периода // Океанология. 2016. Т. 56. С. 90–100.
  8. Романова Н.Д., Болтенкова М.А., Полухин А.А. и др. Гетеротрофный бактериопланктон эстуария Оби в вегетационный сезон: пространственная и временная изменчивость // Океанология. 2022. Т. 62. С. 428–438.
  9. Суханова И.Н., Флинт М.В., Мошаров С.А., Сергеева В.М. Структура сообществ фитопланктона и первичная продукция в Обском эстуарии и на прилежащем Карском шельфе // Океанология. 2010. Т. 50. С. 785–800.
  10. Суханова И.Н., Флинт М.В., Сергеева В.М., Кременецкий В.В. Фитопланктон юго-западной части Карского моря // Океанология. 2011. Т. 51. С. 1039–1053.
  11. Суханова И.Н., Флинт М.В., Сергеева В.М. Фитопланктон поверхностной опресненной линзы Карского моря // Океанология. 2012. Т. 52. С. 688–699.
  12. Суханова И.Н., Флинт М.В., Дружкова Е.Н. и др. Фитопланктон северо-западной части Карского моря // Океанология. 2015. Т. 55. С. 605–619.
  13. Суханова И.Н., Флинт М.В., Сахарова Е.Г. и др. Структура фитоценозов Енисейского эстуария и прилежащего Карского шельфа в позднелетний переход // Океанология. 2020. Т. 60. С. 858–875.
  14. Ardyna M., Arrigo K.R. Phytoplankton dynamics in a changing Arctic Ocean // Nat. Clim. Chang. 2020. V. 10. P. 892–903.
  15. Arrigo K.R., Perovich D.K., Pickart R.S. Phytoplankton blooms beneath the sea ice in the Chukchi sea // Deep Sea Res. II. 2014. V. 105. P. 1–16.
  16. Belevich T.A., Demidov A.B., Vorob'eva O.V. et al. Picocyanobacteria in the Ob estuary and adjacent Kara Sea shelf in late autumn: Composition, distribution and functional role // Oceanology. 2024. V. 64. P. 837–845.
  17. Belevich T.A., Ilyash L.V., Milyutina I.A. et al. Phototrophic Picocukaryotes of Onega Bay, the White Sea: Abundance and Species Composition // Moscow Univ. Biol. Sci. Bull. 2017. V. 72. P. 109–114.
  18. Belevich T.A., Demidov A.B., Vorob'eva O.V. et al. Photoautotrophic picoplankton of the Kara Sea in the middle of summer: Effect of first-year ice retreat on carbon and chlorophyll biomass and primary production // Marine Environmental Research. 2024. V. 202. P. 106809.
  19. Booth B.C., Horner R.A. Microalgae on the Arctic Ocean Section, 1994: species abundance and biomass // Deep-Sea Res. II. 1997. V. 44. P. 1607–1622.
  20. Clarke K.R., Gorley R.N. PRIMER v6.: User Manual. Tutorial. Plymouth: PRIMER-E, 2006. 192 p.
  21. Cottrell M.T., Kirchman D.L. Photoheterotrophic microbes in the arctic ocean in summer and winter // Appl. Environ. Microbiol. 2009. V. 75. P. 4958–4966.
  22. Demidov A.B., Sukhanova I.N., Belevich T.A. et al. Size-fractionated surface phytoplankton in the Kara and Laptev seas: environmental control and spatial variability // Mar. Ecol. Progr. Ser. 2021. V. 664. P. 59–77.
  23. DuRand M.D., Olson R.J., Chisholm S.W. Phytoplankton population dynamics at the Bermuda Atlantic time-series station in the Sargasso Sea // Deep-Sea Res. II. 2001. 48. P. 1983–2003.
  24. Egge J.K., Aksnes D.L. Silicate as regulating nutrient in phytoplankton competition // Mar. Ecol. Progr. Ser. 1992. V. 83. P. 281–289.
  25. Ferland J., Gosselin M., Starr M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification // Journal of Marine Systems. 2011. V. 88. P. 385–400.
  26. Finkel Z.V., Beardall J., Flynn K.J. et al. Phytoplankton in a changing world: cell size and eLennental stoichiometry // J. Plankton Res. 2010. 32. P. 119–137.
  27. Fisher T.R., Peele E.R., Ammerman J.W. et al. Nutrient limitation of phytoplankton in Chesapeake Bay // Mar. Ecol. Progr. Ser. 1992. V. 82. P. 51–63.
  28. Gordeev V.V., Martin J.M., Sidorov I.S. et al. A reassessment of the Eurasian River input of water, sediment, major eLennents, and nutrients to the Arctic Ocean // Amer. J. Sci. 1996. V. 296. P. 664–691.
  29. Gosselin M., Levasseur M., Wheeler P.A. et al. New measurements of phytoplankton and ice algal production in the Arctic Ocean // Deep-Sea Res. II. 1997. V. 44. P. 1623–1625, 1627–1644.
  30. Grasshoff K., Kremling K., Ehrhardt M. (Eds.) Methods of Seawater Analysis, 3rd ed. Wiley-VCH Verlag GmbH: Weinheim, Germany. 1999. p. 577.
  31. Hammer Ø., Harper D.A.T., Ryan P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis // Palaeontologia Electronica. 2001. V. 4. № 1. Art. 4. P. 1–9.
  32. Holmes R.M., McClelland J.W., Peterson B.J. et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas // Estuaries Coasts. 2012. V. 35. P. 369–382.
  33. Holm-Hansen O., Lorenzen C.J., Holmes R.W., Strickland J.D.H. Fluorometric determination of chlorophyll // J. Cons. Perm. Int. Explor. Mer. 1965. V. 30. P. 3–15.
  34. Holm-Hansen O., Riemann B. Chlorophyll a determination: Improvements in methodology // Oikos. 1978. № 30. P. 438–447.
  35. Le Fouest V., Babin M., Trembley J.-E. The fate of riverine nutrients on Arctic shelves // Biogeosciences. 2013. V. 10. P. 3661–3677.
  36. Makkaveev P.N. The total alkalinity in the anoxic waters of the Black Sea and in sea-river mixture zones. Intergovernmental Oceanographic Commission. Joint IOC-JGOFS CO2 Advisory Panel Meeting. Seven Session. Annex V. UNESCO, 1998. 5 p.
  37. Massana R. Eukaryotic picoplankton in surface oceans // Annu. Rev. Microbiol. 2011. V. 65. P. 91–110.
  38. Millero F.J. Thermodynamics of the carbon dioxide system in oceans // Geochim. Cosmochim. Acta. 1995. V.59. P. 661–677.
  39. Moran S.B., Lomas M.W., Kelly R.P. et al. Seasonal succession of net primary productivity, particulate organic carbon export, and autotrophic community composition in the eastern Bering Sea // Deep Sea Research. II. 2012. V. 65–70. P. 84–97.
  40. Mosharov S.A., Druzhkova E.I., Sazhin A.F. et al. Structure and Productivity of the Phytoplankton Community in the Southwestern Kara Sea in Early Summer // JMSE. 2023. № 11(4). P. 2023832.
  41. Parli B.V., Bhaskar J.T., Jawak S. et al. Mixotrophic plankton and Synechococcus distribution in waters around Svalbard, Norway during June 2019 // Polar Science. 2021. V. 30. P. 100697.
  42. Paulsen M.L., Doré H., Garczarek L. et al. Synechococcus in the Atlantic Gateway to the Arctic Ocean // Front. Mar. Sci. 2016. V. 3. № 191. P. 191–205.
  43. Pedrós-Alió C., Potvin M., Lovejoy C. Diversity of planktonic microorganisms in the Arctic Ocean // Prog. Oceanogr. 2015. V. 139. P. 233–243.
  44. Ribeiro C., Gerikas M., dos Santos A.L. et al. Estimating microbial populations by flow cytometry: Comparison between instruments // Limnol. Oceanogr. Methods. 2016. № 14. P. 750–758.
  45. Stain R. Circum Arctic River discharge and its geological record // Int. J. Earth Sciences. 2000. V. 89. P. 447–449.
  46. Steenman Nielsen E. The use of radioactive carbon (C14) for measuring organic production in the sea // J. Cons. Perm. Ins. Explor. Mer. 1952. № 18. P. 117–140.
  47. Stepanova S.V., Kivva K.K., Polukhin A.A. Application of Statistical Data Analysis Methods for Zoning Kara Sea Waters // Oceanology. 2024. V. 64. P. 670–680.
  48. Subba Rao D.V., Platt T. Primary Production of Arctic Waters // Polar Biol. 1984. № 3. P. 191–201.
  49. Sukhanova I.N., Flint M.V., Fedorov A.V. et al. Phytoplankton of the Ob Estuary (Kara Sea) in the Season Preceding Winter // Oceanology. 2024. V. 64. P. 493–500.
  50. Timmermans M.L., Cole S., Toole J. Horizontal density structure and restratification of the Arctic Ocean surface layer // J. Phys. Oceanogr. 2012. V. 42. P. 659–668.
  51. Trembley J.E., Michel C., Hobson K.A. et al. Bloom dynamics in early-opening water of the Arctic Ocean // Limnol. Oceanogr. 2006. № 51. P. 900–912.
  52. Verity P.G., Robertson C.Y., Tronzo C.R. et al. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton // Limnol. Oceanogr. 1992. № 37. P. 1434–1446.
  53. Waleron M., Waleron K., Vincent W.F., Wilmotte A. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean // FEMS Microbiol. Ecol. 2007. V. 59. P. 356–365.
  54. Zubkov, M., Tarran, G. High bacteriovy by the smallest phytoplankton in the North Atlantic Ocean // Nature. 2008. № 455. P. 224–226.
  55. Zwirglmaier K., Jardillier L., Ostrowski M. et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes // Environ. Microbiol. 2008. V. 10. P. 147–161.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).