Role of microorganisms and viruses in the vertical flux in the East Siberian Sea and Laptev Sea
- 作者: Kopylov A.I.1,2, Zabotkina Е.А.1, Romanenko А.V.1, Sazhin А.F.2, Flint M.V.2
-
隶属关系:
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
- Shirshov Institute of Oceanology, Russian Academy of Sciences
- 期: 卷 65, 编号 1 (2025)
- 页面: 91-101
- 栏目: Морская биология
- URL: https://journals.rcsi.science/0030-1574/article/view/296287
- DOI: https://doi.org/10.31857/S0030157425010078
- EDN: https://elibrary.ru/DPOOKC
- ID: 296287
如何引用文章
详细
The study of the contribution of bacteria (BAC), heterotrophic nanoflagellates (HNF) and viruses (VIR) to vertical matter fluxes on the shelves of the East Siberian Sea (ESS) and the Laptev Sea (LS) was carried out using sediment traps placed on buoy stations at depths of 18–55 m for 4–19 days. The value of the total organic carbon flux (TOC) contained in the cells of bacteria (BAC), heterotrophic nanoflagellates (HNF) and virus particles (VIR) in the ESS varied from 0.5 to 2.4 mg C m–2 day–1 and amounted to 1.1–4.9% of the total TOC flux, in the LS – from 0.7 to 5.2 mg C m–2 day–1 and amounted to 1.1–6.2% of the total TOC flux. The maximum values of flows were measured near the Lena River delta, the mouths of the Khatanga and Indigirka Rivers. The contribution of BAC, GNF and VIR to the total biomass of the microbial community attached to sinking particles was, on average, 59 ± 11%, and 28 ± 8%, 13 ± 9% for VSM and ML, respectively.
作者简介
A. Kopylov
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences; Shirshov Institute of Oceanology, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: kopylov@ibiw.ru
俄罗斯联邦, Borok; Moscow
Е. Zabotkina
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
Email: kopylov@ibiw.ru
俄罗斯联邦, Borok
А. Romanenko
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
Email: kopylov@ibiw.ru
俄罗斯联邦, Borok
А. Sazhin
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: kopylov@ibiw.ru
俄罗斯联邦, Moscow
M. Flint
Shirshov Institute of Oceanology, Russian Academy of Sciences
Email: kopylov@ibiw.ru
俄罗斯联邦, Moscow
参考
- Дриц А.В., Кравчишина М.Д., Пастернак А.Ф. и др. Роль зоопланктона в вертикальном потоке вещества в Карском море и море Лаптевых в осенний сезон // Океанология. 2017. Т. 57. № 6. с. 934–948. https://doi.org/10.7868/S0030157417060089
- Дриц А.В., Пастернак А.Ф., Кравчишина М.Д. и др. Роль планктона в вертикальном потоке вещества на шельфе Восточно-Сибирского моря // Океанология. 2019. Т. 59. № 5. С. 746–754. https://doi.org/10.31857/S0030-1574595746-754
- Дриц А.В., Кравчишина М.Д., Суханова И.Н. и др. Сезонная изменчивость потока осадочного вещества на шельфе северной части Карского моря // Океанология. 2021. Т. 61. № 6. С. 984–993. https://doi.org/10.1134/S0001437021060217
- Косолапова Н.Г., Косолапов Д.Б., Копылов А.И., Романенко А.В. Гетеротрофные нанофлагелляты в пелагиали и донных отложениях восточной части моря Лаптевых // Океанология. 2019. Т. 59. № 6. С. 974–986. https://doi.org/10.31857/S0030-1574596974-986
- Лисицын А.П., Новигатский А.Н., Клювиткин А.А. и др. Потоки рассеянного вещества в Белом море, седиментационные обсерватории, новые направления изучения осадочного вещества // Система Белого моря. Т. 3. М.: Научный мир, 2013. С. 201–291.
- Лукашин В.Н., Клювиткин А.А., Лисицын А.П., Новигатский А.Н. Малая седиментационная ловушка МСЛ-110 // Океанология. 2011. Т. 51. № 4. С. 746–750.
- Люцарев С.В., Сметанкин А.В. Определение углерода в водной взвеси // Методы исследования органического вещества в океане. М.: Наука, 1980. С. 46–50.
- Пастернак А.Ф., Дриц А.В., Кравчишина М.Д., Флинт М.В. Вклад зоопланктона в вертикальный поток вещества в морях Сибирской Арктики // Докл. РАН. 2017. Т. 477. № 3. С. 380–383. https://doi.org/10.7868/S086956521733026X
- Суханова И.Н., Флинт М.В. Сезонная динамика вертикальных потоков фитопланктона, тинтиннид и стрекательных клеток кишечнополостных в Карском море // Океанология. 2022. Т. 62. № 6. С. 887–897. https://doi.org/10.31857/S0030157422060120
- Alcolombri U., Peaudecent F.J., Fernandez V.I. et al. Sinking enhances the degradation of organic particles by marine bacteria // Nature Geoscience. 2021. V. 14. P. 775–780. https://doi.org/10.1038/s41561-021-00817-x
- Azam F., Malfatti F. Microbial structuring of marine ecosystems // Nat. Rev. Microbiol. 2007. V. 5. P. 782–791. https://doi.org/10.1038/nrmicro1747
- Baumas C., Bizic M. A focus on different types of organic matter particles and their significance in the open ocean carbon cycle // Progress in Oceanography. 2024. Vol. 224. P. e103233. https://doi.org/10.1016/j.pocean.2024.103233
- Binder B. Reconsidering the relationship between viral-ly induced bacterial mortality and frequency of infected cells // Aquat. Microb. Ecol. 1999. V. 18. P. 207–215. https://doi.org/10.3354/ame018207
- Børsheim K.Y., Bratbak G. Cell volume to carbon conversion factors for bacterivorous Monas sp. enriched from seawater // Mar. Ecol. Prog. Ser. 1987. V. 36. P. 171–175. https://doi.org/10.3354/meps036171
- Caron D.A. Technique for enumeration of heterotro-phic and phototrophic nanoplankton, using epifluores-cence microscopy and comparison with other procedures // Appl. Environ. Microbiol. 1983. V. 46. № 2. P. 491–498. https://doi.org/10.1128/aem.46.2.491-498.1983
- Drits A.V., Pasternak A.F., Arashkevich E.G. et al. Influence of riverine discharge and timing of ice retreat on particle sedimentation patterns on the Laptev Sea shelf // J. Geo. Res. Ocean. 2021. V. 126. Art. e2021JC017462. https://doi.org/10.1029/2021JC017462
- Ducklow H.W., Hill S.M., Gardner W.G. Bacterial growth and the decomposition of particulate organic carbon collected in sediment traps // Continent. Shelf Res. 1985. V. 4. N4. P. 445–464. https://doi.org//10.1016/0278-4343(85)90004-4
- Fontanez K.M., Eppley J.M., Samo T.J. et al. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre // Front Microbial. 2015. V. 6. Art. e469. https://doi.org/10.3389/fmicb.2015.00469
- Iturriaga R. Bacterial activity related to sedimenting particulate matter // Mar. Biol. 1979. V. 55. P. 157–169. https://doi.org/10.1007/BF00396814
- Jiao N., Hernal G.J., Hansell D.A. et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean // Nat. Rev. Microbiol. 2010. V. 8. P. 593–599. https://doi.org/10.1038/nrmicro2386
- Jover L.F., Effler T.C., Buchan A. et al. The elemental composition of virus particles: implications for marine biogeochemical cycles // Nat. Rev. Microbiol. 2014. V. 12. P. 519–528. https://doi.org/10.1038/nrmicro3289
- Kiørboe, T., Grossart, H.P., Ploug, H. et al. Particle-associated flagellates: swimming patters, colonization rates and grazing on attached bacteria // Aquat. Microb. Ecol. 2004. V. 35. P. 141–152. https://doi.org/10.3354/ame035141
- Kopylov A.I., Zabotkina E.A., Romanenko A.V. et al. Viruses in the water column and the sediment of the eastern part of the Laptev Sea // Est. Coast. Shelf Sci. 2020. V. 242. Art. e106836. https://doi.org/10.1016/j.ecss.2020.106836
- Kopylov A.I., Zabotkina E.A., Kosolapov D.B. et al. Viruses and viral infection of heterotrophic prokaryotes in shelf waters of the western part of the East Siberian Sea // J. Mar. Sys. 2021. V. 218. Art. e103544. https://doi.org/10.1016/j.jmarsys.2021.103544
- Luo E., Leu A.O., Eppley J.M. et al. Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean // ISME J. 2022. V. 16. P. 1668–1675. https://doi.org/10.1038/s41396-022-01224-9
- Mestre M., Ruiz-Gonzalez C., Logares R. et al. Sinking particles promote vertical connectivity in the ocean microbiome // Proc. Nat. Acad. Sci. USA. 2018. V. 115. P. E6799–E6807. https://doi.org/10.1073/pnas.1802470115
- Norland S. The relationship between biomass and volume of bacteria. In Handbook of Methods in Aquatic Microbial Ecology, ed. Kemp, P. F., Cole, J. J., Sherr, B. F., Sherr, E.B. Lewis Publ.: Boca Raton, 1993. P. 303–308. https://doi.org/10.1201/9780203752746-36
- Passow U., Carlson C.A. The biological pump in a high CO2 world // Mar. Ecol. Prog. Ser. 2012. V. 470. P. 249–271. https://doi.org/10.3354/meps09985
- Porter K.G., Feig Y.S. The use DAPI for identifying and counting of aquatic microflora // Limnol. Oceanogr. 1980. V. 25. № 5. P. 943–948. https://doi.org/10.4319/lo.1980.25.5.0943
- Proctor L.M., Fuhrman J.A. Roles of viral infection in organic particles flux // Mar. Ecol. Prog. Ser. 1991. V. 69. P. 133–142.
- Shen Y., Guilderson T.P., Chavez F.P., McCarthy D. Important contribution of bacteria carbon and nitrogen to sinking particle export // Geophys. Res. Lett. 2023. V. 50. e11. https://doi.org/10.1029/2022GL102485
- Suttle C.A. Enumeration and isolation of virus. In: Kemp P.F., Cole J.J., Sherr B.F., Sherr E.B. (Eds). Handbook of Methods in Aquatic Microbial Ecology. 1st Ed: Lewis Publisher: Boca Raton, 1993. 121–13 pp.
- Taylor G.Y., Kari D.M., Pace M.L. Impact of bacteria and zooflagellates on the composition of sinking particles: an in situ experiment // Mar. Ecol. Progr. Ser. 1986. V. 29. № 2. P. 144–155.
- Turley C., Mackie P. Biogeochemical significance of attached and free-living bacteria and the flux of particles in the NE Atlantic Ocean // Mar. Ecol. Progr. Ser. 1994. V. 115. P. 191–203. https://doi.org/10.3354/meps115191
- Valencia B., Stukel M.R., Allen A.E. et al. Microbial communities with sinking particles across an environmental upwelling to the oligotrophic ocean // Deep Sea Res. P.I. Oceanogr. Res. Pap. 2022. V. 179. Art. e103668. https//doi.org/10/1016/j.dsr.2021.103668
- Wrobel В., Filippini M., Piwowarczyk J. et al. Low virus to prokaryote ratios in the cold: benthic viruses and prokaryotes in a subpolar marine ecosystem (Hornsund, Svalbard) // Int. Microbiol. 2013. V. 16. P. 45–52. https:// doi.org/10.2436/20.1501.01.179
补充文件
