Statistical Summary of the Chemical Composition of Atmospheric Aerosol over the Seas of the Eurasian Sector of the Arctic Ocean

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Based on the results of long-term research in the Eurasian sector of the Arctic Ocean, a statistical summary of the chemical composition of atmospheric aerosol is presented: the concentrations of 8 ions, 22 microelements, organic and elemental carbon (OC, EC), as well as the isotopic composition of carbon δ13C. The average aerosol characteristics had been: 5.14 μg/m3 for the total ion concentration with a predominant contribution (72%) of Na+ and Cl ions; 175 ng/m3 for the total concentration of trace elements. with the main contribution (70%) of terrigenous elements Fe and Al; 700 ng/m3 for the OC concentration; 32 ng/m3 for the ЕC concentration; –27.9‰ for the isotopic composition δ13C. High enrichment factors for the elements Cr, Ni, Se, Mo, Sn, Pb, Cu, Zn, As, Ag and Sb (relative to the composition of the earth's crust) were revealed, which indicates their technogenic origin. The spatial distribution of concentrations of all ions is characterized by a decrease (on average, 3.5 times) from the Norwegian Sea to the Chukchi Sea. The spatial distribution of trace element concentrations was divided into 3 groups with maxima over the Norwegian or Barents or Kara Seas and a minimum over the Chukchi Sea. The characteristics of carbon-containing aerosol also show a trend of change in an easterly direction: a decrease in OC and EC concentrations and a heavier isotopic composition of carbon.

作者简介

S. Sakerin

V.E. Zuev Institute of Atmospheric Optics

编辑信件的主要联系方式.
Email: sms@iao.ru
俄罗斯联邦, Tomsk

V. Polkin

V.E. Zuev Institute of Atmospheric Optics

Email: sms@iao.ru
俄罗斯联邦, Tomsk

L. Golobokova

Limnology Institute

Email: sms@iao.ru
俄罗斯联邦, Irkutsk

D. Kalashnikova

V.E. Zuev Institute of Atmospheric Optics; Institute of Monitoring of Climatic and Ecological Systems

Email: sms@iao.ru
俄罗斯联邦, Tomsk; Tomsk

M. Kravchishina

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: sms@iao.ru
俄罗斯联邦, Moscow

I. Kruglinsky

V.E. Zuev Institute of Atmospheric Optics

Email: sms@iao.ru
俄罗斯联邦, Tomsk

N. Onishchuk

Limnology Institute

Email: sms@iao.ru
俄罗斯联邦, Irkutsk

S. Popova

V.E. Zuev Institute of Atmospheric Optics; Voevodsky Institute of Chemical Kinetics and Combustion

Email: sms@iao.ru
俄罗斯联邦, Tomsk; Novosibirsk

A. Pochufarov

V.E. Zuev Institute of Atmospheric Optics

Email: sms@iao.ru
俄罗斯联邦, Tomsk

G. Simonova

Institute of Monitoring of Climatic and Ecological Systems

Email: sms@iao.ru
俄罗斯联邦, Tomsk

V. Shevchenko

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: sms@iao.ru
俄罗斯联邦, Moscow

M. Shikhovtsev

V.E. Zuev Institute of Atmospheric Optics; Limnology Institute

Email: sms@iao.ru
俄罗斯联邦, Tomsk; Irkutsk

参考

  1. Виноградова А.А., Пономарева Т.Я. Атмосферный перенос антропогенных примесей в арктические районы России (1986–2010 гг.) // Оптика атмосферы и океана. 2012. Т. 25. № 6. С. 475–483.
  2. Виноградова А.А., Иванова Ю.А. Перенос воздушных масс и загрязнений к арктическим островам России (1986–2016 гг.): долговременные, межгодовые и сезонные вариации // Геофизические процессы и биосфера. 2017. T. 16. № 4. С. 5–20. https://doi.org/10.21455/GPB2017.4–1.
  3. Голобокова Л.П., Ходжер Т.В., Изосимова О.Н. и др. Химический состав атмосферного аэрозоля в арктическом районе по маршрутам морских экспедиций 2018–2019 гг. // Оптика атмосферы и океана. 2020. Т. 33. № 6. С. 421–429. https://doi.org/10.15372/AOO20200601.
  4. Голобокова Л.П., Круглинский И.А., Почуфаров А.О. и др. Современное состояние химического состава атмосферного аэрозоля Арктических районов по маршрутам морских экспедиций 83–84 рейсов НИС “Академик Мстислав Келдыш” // Лед и снег. 2022. Т. 62. № 4. С. 607–620. https://doi.org/10.31857/S2076673422040155.
  5. Голобокова Л.П., Бердашкинова О.И., Лоскутова М.А. и др. Результаты многолетних исследований химического состава аэрозоля в атмосфере на стационаре “Ледовая база Мыс Баранова” // Оптика атмосферы и океана. 2023. Т. 36. № 11. С. 874–882. https://doi.org/10.15372/AOO20231102.
  6. Ивлев Л.С. Химический состав и структура атмосферных аэрозолей. Л.: Изд-во Ленингр. ун-та, 1982. 368 c.
  7. Лисицын А.П. Современные представления об осадкообразовании в океанах и морях. Океан как природный самописец взаимодействия геосфер Земли // Мировой океан. Т. 2. Физика, химия, и биология океана. Осадкообразование в океане и взаимодействие геосфер Земли. М.: Научный мир, 2014. С. 331–571.
  8. Лебедев А.Т. Масс-спектрометрия для анализа объектов окружающей среды. М: Техносфера, 2013. 632 с.
  9. ПНД Ф 16.1:2.3:3.11–98 Методика выполнения измерений содержания металлов в твердых объектах методом спектрометрии с индуктивно-связанной плазмой. С.-Пб.: Центр Исследования и Контроля Воды, 2005. 31 с.
  10. Полькин В.В., Щелканов Н.Н., Голобокова Л.П. и др. Сравнение методик оценки вклада континентальных и морских источников в ионный состав приводного аэрозоля Белого моря // Оптика атмосферы и океана. 2008. Т. 21. № 1. С. 23–26.
  11. Сакерин С.М., Кабанов Д.М., Круглинский И.А. Особенности пространственного распределения концентраций аэрозоля в атмосфере Евразийского сектора Северного Ледовитого океана // Оптика атмосферы и океана. Физика атмосферы. Материалы XXX Международного симпозиума. [Электронный ресурс]. Санкт-Петербург, 1–5 июля 2024 г.
  12. Abbatt J.P.D., Leaitch W.R., Aliabadi A.A. et al. Overview paper: New insights into aerosol and climate in the Arctic // Atmos. Chem. Phys. 2019. V. 19. p. 2527–2560.
  13. Bond T.C., Streets D.G., Yarber K.F. et al. A technology-based global inventory of black and organic carbon emissions from combustion // J. Geophys. Res. 2004. V. 109. D14203. https://doi.org/10.1029/2003JD003697.
  14. EMEP manual for sampling and chemical analysis. EMEP/CCC-Report 1/95. Kjeller, Norway: NILU, 1996. 303 p.
  15. Golobokova L., Khodzher T., Khuriganova O. et al. Variability of Chemical Properties of the Atmospheric Aerosol above Lake Baikal during Large Wildfires in Siberia // Atmosphere. 2020. V. 11(11). 1230. https://doi.org/10.3390/atmos11111230.
  16. Haywood J., Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review // Rev. Geophys. 2000. V. 38(4). P. 513–543.
  17. Hirdman D., Sodemann H., Eckhardt S. et al. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output // Atmosph. Chem. Phys. 2010. V. 10. P. 669–693.
  18. Kondratyev K. Ya., Ivlev L.S., Krapivin V.F. et al. Atmospheric aerosol properties, formation processes, and impacts: from nano- to global scales. Chichester: Springer/PRAXIS, 2006. 572 p.
  19. Makarov V.I., Koutsenogii K.P., Koutsenogii P.K. Daily and seasonal changes of organic and inorganic carbon content in atmospheric aerosol Novosibirsk region // J. Aer. Sci. 1999. V. 30. P. S255–S256.
  20. Millero F.J. Chemical Oceanography. 4th ed. Boca Raton: CRC Press, 2016. 591 p.
  21. Physics and Chemistry of the Arctic Atmosphere / In: Kokhanovsky A., Claudio Tomasi C.(Eds.) Polar Sciences series. Springer, 2020. 717 p. https://doi.org/10.1007/978-3-030-33566-3
  22. Quinn P.K., Bates T.S., Schulz K. et al. Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008 // Atmospheric Chemistry and Physics. 2009. V. 9. P. 8883–8888.
  23. Rudnick R.L., Gao S. Composition of the continental crust // Treatise on geochemistry. 2014. V. 4. С. 1–51.
  24. Sakerin S.M., Kabanov D.M., Makarov V.I. et al. Spatial distribution of atmospheric aerosol physicochemical characteristics in Russian sector of the Arctic Ocean // Atmosphere. 2020. V. 11(11). P. 1170. https://doi.org/10.3390/atmos1111170.
  25. Schmale J., Arnold S., Law K.S. et al. Local Arctic air pollution: A neglected but serious problem // Earth’s Future. 2018. V. 6. P. 1385–1412. https://doi.org/10.1029/2018EF000952.
  26. Schmale J., Sharma S., Decesari S. et al. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories // Atmos. Chem. Phys. 2022. V. 22. P. 3067–3096. https://doi.org/10.5194/acp-22-3067-2022.
  27. Schoster F., Stein R. Major and minor elements in surface sediments of Ob and Yenisei estuaries and the adjacent Kara Sea // Ber. Polarforsch. 1999. No. 300. P. 196–207.
  28. Shevchenko V. The influence of aerosols on the oceanic sedimentation and environmental conditions in the Arctic // Berichte zur Polar- und Meeresforschung. 2003. No. 464. 149 p.
  29. Shindell D., Kuylenstierna J.C.I., Vignati E. et al. Simultaneously mitigating near-term climate change and improving human health and food security // Science. 2012. V. 335(6065). P. 183–189. https://doi.org/10.1126/science.1210026.
  30. Smithsonian Institution – Global Volcanism Program: Worldwide Holocene Volcano and Eruption Information < https://volcano.si.edu/ > (accessed on February 2022).
  31. Sutton M.A., Erisman J.W., Dentener F. et al. Ammonia in the environment: From ancient times to the present // Environmental Pollution. 2008. V. 156. P. 583–604. doi: 10.1016/j.envpol.2008.03.013.
  32. Tsunogai S., Saito O., Yamada K. et al. Chemical сomposition of oceanic aerosol // J. Geophys. Res. 1972. V. 77. No. 27. P. 5283–5292.
  33. Uematsu M., Toratani M., Kajino M. et al. Enhansment of primary productivity in the western North Pacific caused by the eruption of the Miyakejima Volcano // Geophys. Res. Lett. 2004. V. 31. L06106. https://doi.org/10.1029/2003GL018790.
  34. Vinogradova A.A., Kotova E.I. Pollution of Russian northern seas with heavy metals: comparison of atmospheric flux and river flow // Izvestia, Atmospheric and Oceanic Physics. 2019. V.55. N.7. P. 695–704. doi: 10.1134/S0001433819070119.
  35. Widory D. Combustibles, fuels and their combustion products: A view through carbon isotopes // Combustion theory and modeling. 2006. V. 10(5). P. 831–841. https://doi.org/10.1080/13647830600720264.
  36. Xu G., Gao Y. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica // Polar Res. 2014. V. 33. P. 23973. https://doi.org/10.3402/polarv.33.23973.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».