The Morphometry of Ice Scours in the South-Western Part of the Kara Sea

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ice-gouging topography of the southwestern part of the Kara Sea bed is a result of the impact of icebergs and sea ice. During 52 cruise of the R/V Akademik Nikolaj Strakhov using a multibeam echo sounder we collected a representative data of key parameters of ice scours (location, orientation, depth, width) for the first time, which allows us to draw conclusions on a regional scale. We revealed regularities in the distribution of the ice scours both in space and in depth and their density in different parts of the seabed. It was revealed that the maximum dimensions of the ice scours decrease with the distance from the sources of iceberg calving from NW to SE. The orientation of the ice scours correlates with the main drift directions of the icebergs. Most of the ice scours are located at depths up to 220 m and could have formed both at modern and at lower sea level (in post-glacial time). We identified a high degree of the seabed transformation by ice-gouging processes in the southwestern part of the Kara Sea.

Full Text

Restricted Access

About the authors

S. V. Maznev

Geological Institute, Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: svmaznev@gmail.com
Russian Federation, Moscow; Moscow

O. V. Kokin

Geological Institute, Russian Academy of Sciences; Lomonosov Moscow State University

Email: svmaznev@gmail.com
Russian Federation, Moscow; Moscow

V. V. Arkhipov

Geological Institute, Russian Academy of Sciences; Lomonosov Moscow State University

Email: svmaznev@gmail.com
Russian Federation, Moscow; Moscow

E. A. Moroz

Geological Institute, Russian Academy of Sciences

Email: svmaznev@gmail.com
Russian Federation, Moscow

A. P. Denisova

Geological Institute, Russian Academy of Sciences; Lomonosov Moscow State University

Email: svmaznev@gmail.com
Russian Federation, Moscow; Moscow

R. A. Ananiev

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: svmaznev@gmail.com
Russian Federation, Moscow

S. L. Nikiforov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: svmaznev@gmail.com
Russian Federation, Moscow

N. O. Sorokhtin

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: svmaznev@gmail.com
Russian Federation, Moscow

S. V. Godetskiy

Geological Institute, Russian Academy of Sciences

Email: svmaznev@gmail.com
Russian Federation, Moscow

References

  1. Бирюков В.Ю., Совершаев В.А. Геоморфология дна Карского моря // Динамика арктических побережий России / Под ред. В.И. Соломатина и др. М.: Географический факультет МГУ, 1998. С. 102–115.
  2. Кокин О.В., Копа-Овдиенко Н.В., Цвецинский А.С. Микрорельеф дна Байдарацкой губы и его динамика // Вести газовой науки. 2013. № 3(14). С. 92–96.
  3. Мазнев С.В., Кокин О.В., Баранская А.В., Огородов С.А. Изменение условий ледового выпахивания в морях Российской Арктики в связи с потеплением климата // Сб. материалов, представленных на Всероссийскую конференцию с международным участием XXIX Береговая конференция: Натурные и теоретические исследования – в практику берегопользования. 2022. С. 136–138.
  4. Миронюк С.Г., Иванова А.А. Микро- и мезорельеф гляциального шельфа Западно-Арктических морей в свете новых данных // Бюллетень Комиссии по изучению четвертичного периода. 2018. № 76. С. 41–58.
  5. Огородов С.А. Роль морских льдов в динамике рельефа береговой зоны. М.: Издательство Московского университета, 2011. 173 с.
  6. Рыбалко А.Е., Миронюк С.Г., Росляков А.Г. и др. Новые признаки покровного оледенения в Карском море: мегамасштабная ледниковая линейность в Восточно-Новоземельском желобе // Рельеф и четвертичные образования Арктики, Субарктики и Северо-Запада России. 2020. Вып. 7. С. 175–181.
  7. Baranskaya A.V., Khan N.S., Romanenko F.A. et al. A postglacial relative sea-level database for the Russian Arctic coast // Quaternary Science Reviews. 2018. V. 199. P. 188–205.
  8. Barnes P.W., Rearic D.M., Reimnitz E. Ice gouging characteristics and processes // The Alaskan Beaufort Sea: Ecosystems and Environments / P.W. Barnes, D.M. Schell, E. Reimnitz (Eds.). Acad. Press Inc., Orlando, Florida, 1984. P. 185–212.
  9. Irrgang A.M., Bendixen M., Farquharson L.M. et al. Drivers, dynamics and impacts of changing Arctic coasts // Nature Reviews Earth and Environment. 2022. V. 3. P. 39–54.
  10. Kokin O., Maznev S., Arkhipov V. et al. The distribution of maximum ice scour sizes by sea depth at the seabed of the Barents and Kara Seas // Proceedings of the 27th International Conference on Port and Ocean Engineering under Arctic Conditions. Glasgow: POAC23. 2023. P. 1–11.
  11. Kokin O., Usyagina I., Meshcheriakov N. et al. Pb-210 Dating of Ice Scour in the Kara Sea // Journal of Marine Science and Engineering. 2023. V. 11. P. 1404.
  12. Maznev S.V., Kokin O.V., Arkhipov V.V., Baranskaya A.V. Modern and Relict Evidence of Iceberg Scouring at the Bottom of the Barents and Kara Seas // Oceanology. 2023. V. 63(1). P. 84–94.
  13. Miroshnikov A.Y., Asadulin E.E., Komarov V.B. et al. Relief of the Kara Sea bottom and sediment sorption properties as pollution accumulation factors // Oceanology. 2021. V. 61(5). P. 714–726.
  14. Montelli A., Dowdeswell J.A., Pirogova A., et al. Deep and extensive meltwater system beneath the former Eurasian Ice Sheet in the Kara Sea // Geology. 2020. V. 48(2). P. 179–183.
  15. Nikiforov S.L., Lobkovskii L.I., Dmitrevskii N.N. et al. Expected geological and geomorphological risks along The Northern Sea Route // Doklady Earth Sciences. 2016. V. 466(1). P. 75–77.
  16. Nikiforov S.L., Sorokhtin N.O., Ananiev R.A. et al. Research in Barents and Kara Seas during cruise 52 of the R/V Akademik Nikolaj Strakhov // Oceanology. 2022. V. 62(3). P. 433–434.
  17. Ogorodov S., Arkhipov V., Kokin O. et al. Ice effect on coast and seabed in Baydaratskaya Bay, Kara Sea // Geography, Environment, Sustainability. 2013. V. 6, 3. P. 32–50.
  18. Ogorodov S.A., Arkhipov V.V., Baranskaya A.V., Kokin O.V., Romanov, A.O. The Influence of Climate Change on the Intensity of Ice Gouging of the Bottom by Hummocky Formations // Doklady Earth Sciences. 2018. V. 478(2). P. 228–231.
  19. Polyak L., Forman S.L., Herlihy F.A. et al. Late Weichselian deglacial history of the Svyataya (Saint) Anna Trough, northern Kara Sea, Arctic Russia // Marine Geology. 1997. V. 143. P. 169–188.
  20. https://data.giss.nasa.gov/gistemp/maps/index_v4.html

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Plots of zoning of the distribution of plowing furrows on the bottom of the Kara Sea along the route of the 52nd voyage of the R/V “Akademik Nikolai Strakhov”: 1 - areas without furrows, 2 - areas with low density of furrows, 3 - areas with high density of furrows, 4 - areas of polygonal survey.

Download (192KB)
3. Fig. 2. Example of DEM with high density of furrows (site 2, see Fig. 1 for position).

Download (157KB)
4. Fig. 3. Distribution (left) and relative density (right) of plowing furrows over 20-m depth ranges. Black - all furrows, white - large furrows.

Download (163KB)
5. Fig. 4. Distribution of values of depth and width of plowing furrows

Download (158KB)
6. Fig. 5. Plan view and cross section through the U-shaped furrow east of Middle Yamal (Site 9, see Fig. 1 for position).

Download (163KB)
7. Fig. 6. Plan view and cross-sectional profile through the V-shaped furrow east of Middle Yamal (Site 9, see Fig. 1 for position).

Download (161KB)
8. Fig. 7. Plan view of a comb of two furrows in Baidaratskaya Bay (site 11, see Fig. 1 for position), one of which (left in the profile) has a box-shaped transverse profile.

Download (154KB)
9. Fig. 8. Directions of plowing furrows: on the left - all furrows, on the right - large furrows.

Download (275KB)
10. Fig. 9. Direction of furrows by plot.

Download (514KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».