Sources of fresh water components in seawaters of Western part of the Bering Sea according to isotope (δ18О, δD) data
- Authors: Dubinina Е.О.1, Коssova S.А.2, Osadchiev А.А.2, Chizhova Y.N.1, Аvdeenko А.S.1
-
Affiliations:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
- Shirshov Institute оf Oceanology, Russian Academy of Sciences
- Issue: Vol 64, No 3 (2024)
- Pages: 408-423
- Section: Химия моря
- URL: https://journals.rcsi.science/0030-1574/article/view/272846
- DOI: https://doi.org/10.31857/S0030157424030035
- EDN: https://elibrary.ru/QCOALI
- ID: 272846
Cite item
Abstract
The estimates of isotope parameters and sources of fresh water components for subsurface, intermediate, and deep waters of Western part of the Bering Sea were carried out using the isotope (δ18О, δD) data for 177 seawater samples. We show that subsurface, dichothermal and, partially, intermediate waters (< 1000 м) are freshened by the regional atmospheric precipitations. For these waters the next equations of relations between delta values and salinity were obtained:
δ18О = [0.39 ± 0.02]S – 13.52 ± 0.61 and δD = [3.1 ± 0.1]S – 107.0 ± 2.7.
A deeper (1000–2500 m) waters also freshened by atmospheric precipitations, but from the more south region (≈ 40–45 S). The deepest waters (2800–4300 m) are preserving their isotope signal obtained by freshening with meltwaters of Antarctic glacier ice. The distribution of isotope parameters with the depth shows that the vertical mixing at the ≈1000–2500 m depth take place. This process should influent on the re-distribution of the biogenic elements, dissolved oxygen, organic matter, and other components in waters of the Western part of the Bering Sea. Isotope composition of waters passing into the Arctic Ocean halocline (S = 33.1) from the Bering Sea are δ18О = –0.61‰, and δD = –5.4‰.
Full Text

About the authors
Е. О. Dubinina
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian Federation, Moscow
S. А. Коssova
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian Federation, Moscow
А. А. Osadchiev
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian Federation, Moscow
Yu. N. Chizhova
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
Email: elenadelta@gmail.com
Russian Federation, Moscow
А. S. Аvdeenko
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
Author for correspondence.
Email: elenadelta@gmail.com
Russian Federation, Moscow
References
- Дубинина Е.О., Коссова С.А., Мирошников А.Ю., Кокрятская Н.М. Изотопная (δD, δ18O) систематика вод морей Арктического сектора России // Геохимия. 2017. № 11. С. 1041–1052.
- Дубинина Е.О., Коссова С.А., Мирошников А.Ю. Источники и механизмы опреснения морских вод в заливах Цивольки и Седова (Новая Земля) по изотопным (δD, δ18О) данным // Океанология. 2019. Т. 59. № 6. С. 928–938. https://doi.org/10.31857/S0030-1574596928-938
- Дубинина Е.О., Мирошников А.Ю., Коссова С.А., Щука С.А. Модификация опресненных вод на шельфе моря Лаптевых: связь изотопных параметров и солености // Геохимия. 2019. № 1. Р. 3–19. https://doi.org/10.31857/S0016-752564113-19
- Морозов Е.Г., Фрей Д.И., Кампос Э. Поток Антарктической донной воды в канале Вима. Обзор // Фундаментальная и прикладная гидрофизика. 2018. Т. 11. № 2. С. 94–102. https://doi.org/10.7868/S2073667318020089
- Пипко И.И., Пугач С.П., Савельева Н.И. и др. Карбонатные характеристики вод Анадырского залива // Доклады Академии Наук. 2019. Т. 487. № 3. С. 328–332. https://doi.org/10.31857/S0869-56524873328-332
- Aagaard K., Weingartner T.J., Danielson S.L. et al. Some controls on flow and salinity in Bering Strait // Geophys. Res. Lett. 2006. V. 33. L19602. https://doi.org/10.1029/2006GL026612
- Aagard K., Coachman L.K., Carmack E. On the halocline of the Arctic Ocean // Deep-Sea Res. 1981. V. 28A. № 6. P. 529–545.
- Aksenov Y., Karcher M., Proshutinsky A. et al. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments // J. Geophys. Res. Oceans. 2015. V. 121. P. 27–59. https://doi.org/10.1002/2015JC011299
- Alkire M.B., Morison J., Andersen R. Variability in the meteoric water, sea-ice melt, and Pacific water contributions to the central Arctic Ocean, 2000–2014 // J. Geophys. Res. Oceans. 2015. V. 120. P. 1573–1598. https://doi.org/10.1002/2014JC010023
- Alkire M.B., Jacobson A., Macdonald R.W. et al. Assessing the Contributions of Atmospheric/Meteoric Water and Sea Ice Meltwater and Their Influences on Geochemical Properties in Estuaries of the Canadian Arctic Archipelago // Estuaries and Coasts. 2019. V. 42. P. 1226–1248. https://doi.org/10.1007/s12237-019-00562-w
- Bauch D., Cherniavskaya E., Timokhov L. Shelf basin exchange along the Siberian continental margin: Modifi cation of Atlantic Water and Lower Halocline Water // Deep-Sea Res. I. 2016. V. 115. P. 188–198. https://doi.org/10.1016/j.dsr.2016.06.008
- Bauch D., Torres-Valdes S., Polyakov I. et al. Halocline water modifi cation and along-slope advection at the Laptev Sea continental margin // Ocean Sci. 2014. V. 10. P. 141–154. https://doi.org/10.5194/os-10-141-2014
- Behrensa M.K., Pahnkea K., Schnetgerb B. et al. Sources and processes affecting the distribution of dissolved Nd isotopes and concentrations in the West Pacific // Geochim. Cosmochim. Acta. 2018. V. 222. P. 508–534. https://doi.org/10.1016/j.gca.2017.11.008
- Belem A.L., Caricchio C., Albuquerque A.L. S. et al. Salinity and stable oxygen isotope relationship in the Southwestern Atlantic: constraints to paleoclimate reconstructions // An Acad Bras Cienc. 2019. V. 91. https://doi.org/10.1590/0001-3765201920180226
- Benetti M., Reverdin G., Aloisi G. et al. Stable isotopes in surface waters of the Atlantic Ocean: Indicators of ocean-atmosphere water fluxes and oceanic mixing processes // J. Geophys. Res. Oceans. 2017. V. 122. P. 4723–4742. https://doi.org/10.1002/2017JC012712
- Bostock H.C., Opdyke B.N., Williams M.J.M. Characterising the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers // Deep-Sea Res. I. 2010. V. 57. P. 847–859. https://doi.org/10.1016/j.dsr.2010.04.005
- Brown K.A., Holding J.M., Carmack E.C. Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening // Front. Mar. Sci. 2020. V. 7. P. 606. https://doi.org/10.3389/fmars.2020.00606
- Cooper L.W., Magen C., Grebmeier J.M. Changes in the oxygen isotope composition of the Bering Sea contribution to the Arctic Ocean are an independent measure of increasing freshwater fluxes through the Bering Strait // PLoSONE. 2022. V. 17. № 8. Р. e0273065. https://doi.org/10.1371/journal.pone.0273065
- Cooper L.W., Whitledge T.E., Grebmeier J.M. et al. The nutrient, salinity, and stable oxygen isotope composition of Bering and Chukchi Seas waters in and near the Bering Strait // J. Geophys. Res. 1997. V. 102. № C6. P. 12563–12573. https://doi.org/10.1029/97JC00015
- Craig H. Isotopic variations in meteoric waters // Science. 1961. V. 133. P. 1702–1703.
- Craig H., Gordon L.I. Deuteriem and oxygen 18 variations in the ocean and the marine atmosphere // In: Tongiorgi E. et al (Eds.) Proc. Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, Italy. Pisa, 1965. P. 9–130.
- Danielson S.L., Eisner L.B., Ladd C.A. et al. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas // Deep Sea Research II: Topical Studies in Oceanography. 2017. V. 135. P. 7–26.
- Danielson S.L., Weingartner T. A, Hedstrom K.S. et al. Coupled wind-forced controls of the Bering – Chukchi shelf circulation and the Bering Strait throughflow: Ekman transport, continental shelf waves, and variations of the Pacific–Arctic sea surface height gradient // Prog. Oceanogr. 2014. dx. https://doi.org/10.1016/j.pocean.2014.04.006
- Ekwurzel B., Schlosser P., Mortlock R. et al. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean // J. Geophys. Res. 2001. V. 106. P. 9075–9092. https://doi.org/10.1029/1999JC000024
- Frew R.D., Dennis P.F., Heywood K.J. et al. The oxygen isotope composition of water masses in the northern North Atlantic // Deep-Sea Res. I. 2000. V. 47. P. 2265–2286. https://doi.org/10.1016/S0967-0637(00)00023-6
- Frey D.I., Osadchiev A.A. Large river plumes detection by satellite altimetry: case study of the Ob-Yenisei plume // Remote Sensing. 2021. V. 13. 5014. https://doi.org/10.3390/rs13245014
- Friedman I., Redfield A.C., Schoen B. et al. The variation of the deuterium content of natural waters in the hydrologic cycle // Reviews of Geophysics. 1964. V. 2. Is. 1. P. 177–224. https://doi.org/10.1029/RG002i001p00177.
- Fuhr M., Laukert G., Yu Y. et al. Tracing Water Mass Mixing From the Equatorial to the North Pacific Ocean With Dissolved Neodymium Isotopes and Concentrations // Front. Mar. Sci. 2021. V. 7. P. 603761. https://doi.org/10.3389/fmars.2020.603761
- Graly J.A., Licht K.J., Kassab C.M. et al. Warm-based basal sediment entrainment and far-field Pleistocene origin evidenced in central Transantarctic blue ice through stable isotopes and internal structures. // Journal of Glaciology. 2018. V. 64. Is. 244. P. 185–196. https://doi.org/10.1017/jog.2018.4
- Grebmeier J.M., Cooper L.W., DeNiro M.J. Oxygen isotopic composition of bottom seawater and tunicate cellulose used as indicators of water masses in the northern Bering and Chukchi Seas. // Limnol. Oceanogr. 1990. V. 35. Is. 5. P. 1182–1195. https://doi.org/10.4319/lo.1990.35.5.1182
- Hennig A.N., Mucciarone D.A., Jacobs S.S. et al. Glacial Meltwater in the Southeast Amundsen Sea: A timeseries from 1994–2020 // EGUsphere [preprint] 2023. https://doi.org/10.5194/egusphere-2023-141
- Hirawake T., Oida J., Yamashita Y. et al. Water mass distribution in the northern Bering and southern Chukchi seas using light absorption of chromophoric dissolved organic matter // Progress in Oceanography. 2021. V. 197. https://doi.org/10.1016/j.pocean.2021.102641
- Johnson G.C., Stabeno P.J. Deep Bering Sea Circulation and Variability, 2001–2016, From Argo Data // J. Geophys. Res. Oceans. 2017. V. 122. https://doi.org/10.1002/2017JC013425
- Jones E.P., Anderson L.G., Swift J.H. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: Implications for circulation // Geophys. Res. Lett. 1998. V. 25. № 6. P. 765–768. https://doi.org/10.1029/98GL00464.
- Kawabe M., Fujio S. Pacific Ocean Circulation Based on Observation // Journal of Oceanography. 2010. V. 66. P. 389–403. https://doi.org/10.1007/s10872-010-0034-8.
- Kino K., Okazaki A., Cauquoin A. et al. Contribution of the Southern Annular Mode to variations in water isotopes of daily precipitation at Dome Fuji, East Antarctica // J. Geophys. Res.: Atmospheres. 2021. V. 126. e2021JD035397. https://doi.org/10.1029/2021JD035397
- Landais A., Barkan E., Vimeux F. et al. Combined Analysis of Water Stable Isotopes (H216O, H217O, H218O, HD16O) in Ice Cores // 2009. https://www.researchgate.net/publication/352052928
- Macdonald R.W., Harner T.T., Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data // Science of the Total Environment. 2005. V. 342. P. 5–86.
- Masson V., Vimeux F., Jouzel J. et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records // Quaternary Research. 2000. V. 54. P. 348–358. https://doi.org/10.1006/qres.2000.2172
- Miura T., Suga T., Hanawa K. Numerical Study of Formation of Dichothermal Water in the Bering Sea // Journal of Oceanography. 2003. V. 59. P. 369–376.
- Miura T., Suga T., Hanawa K. Winter Mixed Layer and Formation of Dichothermal Water in the Bering Sea // Journal of Oceanography. 2002. V. 58. P. 815–823.
- Mizuta G., Ohshima K.I., Fukamachi Y. et al. Winter mixed layer and its yearly variability under sea ice in the southwestern part of the Sea of Okhotsk // Cont. Shelf Res. 2004. V. 24. P. 643–657.
- Nishioka J., Obata H., Hirawake T. et al. A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production // J. Oceanogr. 2021. V. 77. P. 561–587. https://doi.org/10.1007/s10872-021-00606-5
- Nomura D., Abe H., Hirawake T. et al. Formation of dense shelf water associated with sea ice freezing in the Gulf of Anadyr estimated with oxygen isotopic ratios // Progress in Oceanography. 2021. V. 196. 102595. https://doi.org/10.1016/j.pocean.2021.102595
- Nomura D., Kawaguchi Y., Webb A. et al. Meltwater layer dynamics of a central Arctic lead: Effects of lead width variation and re-freezing and mixing events during late summer // Elem. Sci. Anth. 2023. V. 11. https://doi.org/10.1525/elementa.2022.00102.
- Oppo D.W., Fairbanks R.G. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25.000 years: Northern Hemisphere modulation of the Southern Ocean // Earth Planet. Sci. Lett. 1987. V. 86. P. 1–15. https://doi.org/10.1016/0012-821X(87)90183-X
- Osadchiev A., Sedakov R., Frey D. et al. Intense zonal freshwater transport in the Eurasian Arctic during ice-covered season revealed by in situ measurements // Scientific Reports. 2023. V. 13. 16508. https://doi.org/10.1038/s41598-023-43524-w
- Osadchiev A.A., Frey D.I., Spivak E.A. et al. Structure and inter-annual variability of the freshened surface layer in the Laptev and East-Siberian seas during ice-free periods // Front.Mar. Sci. 2021. V. 8. 735011. https://doi.org/10.3389/fmars.2021.735011
- Ostlund H.G., Hut G. Arctic Ocean Water Mass Balance From Isotope Data // J. Geophys. Res.. 1984. V. 89. P. 6373–6381.
- Rahmstorf S. Ocean circulation and climate during the past 120.000 years // Nature. 2002. V. 12. P. 207–214. https://doi.org/10.1038/nature01090
- Reid J.L. On the total geostrophic circulation of the pacific ocean: flow patterns, tracers, and transports // Prog. Oceanog. 1997. V. 39. P. 263–352. https://doi.org/10.1016/S0079-6611(97)00012-8
- Rudels B., Carmack E. Arctic Ocean Water Mass Structure and Circulation // Oceanography. 2022. V. 35. No. 3–4. P. 52–65. https://doi.org/10.5670/oceanog.2022.116
- Salmeron A.D., Takayanagi H., Wakaki S. et al. Characterization of water masses around the southern Ryukyu Islands based on isotopic compositions // Progress in Earth and Planetary Science. 2022. V. 9. https://doi.org/10.1186/s40645-022-00503-5
- Schlitzer R. Ocean Data View. Available online at: http://odv.awi.de (accessed October 29, 2020). 2020.
- Steele M., Morison J., Ermold W. et al. Circulation of summer Pacific halocline water in the Arctic Ocean // J. Geophys. Res. Oceans. 2004. V. 109. Is. C2. C02027. https://doi.org/10.1029/2003JC002009
- Stringer W.J., Groves J.E. Location and areal extent of polynyas in the Bering and Chukchi Seas // Arctic. 1991. V. 44. P. 164–171. https://doi.org/10.14430/arctic1583
- Talley L., Pickard G., Emery W. et al. Pacific Ocean // Descriptive Physical Oceanography. Elsevier, Boston, 2011. P. 303–362. https://doi.org/10.1016/B978-0-7506-4552-2.10010-1
- Taylor J.R., Falkner K.K., Schauer U. et al. Quantitative considerations of dissolved barium as a tracer in the Arctic Ocean // J. Geophys. Res. 2003. V. 108. Is. P. 12. https://doi.org/10.1029/2002JC001635
- Tazoe H., Obata H., Hara T. et al. Vertical Profiles of 226Ra and 228Ra Activity Concentrations in the Western Subarctic Gyre of the Pacific Ocean // Front. Mar. Sci. 2022. V. 9. P. 824862. https://doi.org/10.3389/fmars.2022.824862
- Voelker A.H.L., Colman A., Olack G. et al. Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses // Deep-Sea Res. II. 2015. V. 116. P. 89–106. https://doi.org/10.1016/j.dsr2.2014.11.006.
- Wang Y., Liu N., Zhang Z. Sea Ice Reduction During Winter of 2017 Due to Oceanic Heat Supplied by Pacific Water in the Chukchi Sea, West Arctic Ocean // Front. Mar. Sci. 2021. V. 8. P. 650909. https://doi.org/10.3389/fmars.2021.650909
- Waterisotopes Database. http://waterisotopesDB.org. Accessed 2/25/2017
- Werner M., Jouzel J., Masson-Delmotte V. et al. Reconciling glacial Antarctic water stable isotopes with ice sheet topography and the isotopic paleothermometer // Nature Communications. 2018. V. 9. https://doi.org/10.1038/s41467-018-05430-y
- Woodgate R.A., Aagaard K., Swift J.H. et al. Pacific ventilation of the Arctic Ocean’s lower halocline by upwelling and diapycnal mixing over the continental margin // Geophys. Res. Lett. 2005. V. 32. P.L18609. https://doi.org/10.1029/2005GL023999
- Woodgate R.A., Peralta-Ferriz C. Warming and freshening of the Pacific inflow to the Arctic from 1990–2019 implying dramatic shoaling in Pacific Winter Water ventilation of the Arctic water column // Geophys. Res. Lett. 2021. 48, e2021GL092528. https://doi.org/10.1029/2021GL092528
- Yamamoto M., Tanaka N., Tsunogai S. Okhotsk Sea intermediate water formation deduced from oxygen isotope systematics // J. Geophys. Res. 2001. V. 106. № C12. P. 31075–31084.
- Yamamoto-Kawai M., McLaughlin F. A., Carmack E.C. et al. Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, δ18O, and nutrients // J. Geophys. Res. 2008. V. 113. P. C01007. https://doi.org/10.1029/2006JC003858
- Yamashita Y., Yagi Y., Ueno H. et al. Characterization of the water masses in the shelf region of the Bering and Chukchi Seas with fluorescent organic matter // J. Geophys. Res. 2019. V. 124. P. 7545–7556. https://doi.org/10.1029/2019JC015476
- Yang J., Honjo S. Modeling the near-freezing dichothermal layer in the Sea of Okhotsk and its interannual variations // J. Geophys. Res. 1996. V. 101. No. C7. P. 16421–16433.
- Yang Y. Bai X. Summer changes in water mass characteristics and vertical thermohaline structure in the Eastern Chukchi Sea, 1974–2017 // Water. 2020. V. 12. P. 1434. https://doi.org/10.3390/w12051434
- Yao Y., Li T., Zhu X. et al. Characteristics of water masses and bio-optical properties of the Bering Sea shelf during 2007–2009 // Acta Oceanol. Sin. 2022. V. 41. No. 10. P. 140–153. https://doi.org/10.1007/s13131-022-2019-z
Supplementary files
