Determination of the Nature of Hydrocarbons in the Barents Sea (Verification of Remote Sensing Data)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on remote sensing data on the distribution of oil spills obtained using synthetic aperture radar (SAR) imagery of the Sentinel-1A and Sentinel-1B satellites in 2016–2022 and the results of the analysis of aliphatic hydrocarbons (AHCs) and polycyclic aromatic hydrocarbons (PAHs) in bottom sediments taken in 2019–2022, the nature of oil slicks in various areas of the Barents Sea has been established. It is shown that the distribution of oil slicks in coastal areas is greatly influenced by anthropogenic hydrocarbon inflow (mainly from shipping and fishing), which is confirmed by elevated AHC concentrations in coastal sediments (up to 73 μg/g) and in the composition of Corg (up to 3.6%). In the central and northern regions of the Barents Sea (station 7105, in the coordinates 75.2–75.3 N, 31.5–31.8 E), the grouping of oil slicks is due to natural seepage of oil and gas. This is confirmed by the anomalous concentration of PAHs in the lower horizons of the obtained sediment column, and their composition (the dominance of 2-methylnaphthalene, a marker of their oil genesis). At the same time, the proportion of light homologues in the composition of alkanes increased, which may indicate their formation in the sedimentary sequence.

Full Text

Restricted Access

About the authors

I. A. Nemirovskaya

Shirshov Institute of Oceanology, Russian Academy of Sciences

Author for correspondence.
Email: nemir44@mail.ru
Russian Federation, Moscow

A. Yu. Ivanov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: ivanoff@ocean.ru
Russian Federation, Moscow

References

  1. Галиева Е.Р. Оценка перспектив нефтегазоносности Баренцевоморского бассейна по критерию скорости осадконакопления // Нефтегазовая геология. Теория и практика. 2009. Т. 4. [Электронный ресурс] URL: http://www.ngtp.ru/rub/5/28_2009.pdf (дата обращения: 17.03.2020).
  2. Глязнецова Ю.С. Немировская И.А. Особенности распределения битумоидов в донных осадках Баренцева моря // Океанология. 2020. Т. 60. № 5. С. 945–953.
  3. Глязнецова Ю.С., Немировская И.А. Трансформация углеводородов в донных осадках после аварийного разлива дизельного топлива в Норильске //Водные ресурсы. 2024. Т.51. №1. С. 79-92
  4. Григоренко Ю.Н. Зоны нефтегазонакопления как объект накопления и прогноза // Нефтегазовая геология. Теория и практика. 2016. № 4. URL: http://www.ngtp.ru/rub/6/49_2016.pdf
  5. Иванов А.Ю. Естественные нефтепроявления в Каспийском и Баренцевом морях: обнаружение и анализ по данным дистанционного зондирования // Океанологические исследования. 2019. Т. 47. № 5. С. 52–64.
  6. Иванов А.Ю., Матросова Е.Р., Кучейко А.Ю. и др. Поиск и обнаружение естественных нефтепроявлений в морях России по данным космической радиолокации // Исследования Земли из космоса. 2020. № 5. С. 43–62.
  7. Качество морских вод по гидрохимическим показателям. Ежегодник 2020 / Под ред. А.Н. Коршенко. Иваново: ПрессСто, 2022. 240 с.
  8. Клювиткин А.А., Политова Н.В., Новигатский А.Н. и др. Исследования Европейской Арктики в 80-м рейсе научно-исследовательского судна “Академик Мстислав Келдыш” // Океанология. 2021. Т. 61. № 1. С. 156–158.
  9. Кравчишина М.Д., Леин А.Ю., Боев А. и др. Гидротермальные минеральные ассоциации на 71° с.ш. Срединно-Атлантического хребта (первые результаты) // Океанология. 2019. Т. 59. № 6. С. 1039–1057.
  10. Кучейко А.Ю., Иванов А.Ю., Евтушенко Н.В. и др. Пленочные загрязнения Баренцева моря по данным радиолокационного мониторинга 2017–2019 гг. // Экология и промышленность России. 2020. Т. 24. № 7. С. 48–55.
  11. Немировская И.А. Нефть в океане (загрязнение и природные потоки). М.: Научный мир, 2013. 432 с.
  12. Немировская И.А., Глязнецова Ю.С. Влияние аварийного разлива дизельного топлива в Норильске на содержание и состав углеводородов в донных осадках// Водные ресурсы. 2022. Т. 49. № 6. С. 739–752.
  13. Немировская И.А., Храмцова А.В. Углеводороды в воде и в донных осадках Норвежско-Баренцевоморского бассейна // Геохимия. 2023. Т. 61. № 2. С. 173–186.
  14. Патин С.А. Нефтяные разливы и их воздействие на морскую среду и биоресурсы. М.: ВНИРО, 2008. 507 с.
  15. Петрова В.И., Батова Г.И., Куршева А.В. и др. Углеводороды в донных осадках Штокмановской площади — распределение, генезис, временные тренды // Нефтегазовая геология. Теория и практика. 2015. Т. 10. № 3. URL: http://www.ngtp.ru/rub/1/35_2015.pdf.
  16. Романкевич E.A., Ветров A.A. Углерод в Мировом океане. М.: ГЕОС, 2021. 352 с.
  17. Тиссо Б., Вельте Д. Образование и распространение нефти. М.: Мир, 1981. 501 с.
  18. AMAP. Assessment 2007: Chapter 4. Sources, Inputs and Concentrations of Petroleum Hydrocarbons, Polycyclic Aromatic Hydrocarbons, and other Contaminants Related to Oil and Gas Activities in the Arctic. Oslo, 2010. 87 p.
  19. AMAP. Assessment 2016: Chemicals of Emerging Arctic Concern. Oslo, 2017. 353 р.
  20. Andreassen K., Hubbard A., Winsborrow M. et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor // Science. 2017. V. 356. P. 48–953.
  21. Argentino C., Waghorn K.A., Vadakkepuliyambatta S. et al. Dynamic and history of methane seepage in the SW Barents Sea: new insights from Leirdjupet Fault Complex // Sci. Rep. 2021. V. 11. 4373. 10.1038/s41598-021-83542-0' target='_blank'>https://doi: 10.1038/s41598-021-83542-0
  22. Arrigo K.R., van Dijken G.L. Continued increases in Arctic Ocean primary production // Progress in Oceanography. 2015. V. 136. P. 60–70.
  23. Barents Sea. Ecoregion-Ecosystem overview. ICES Advice, 2016. 12 р. www.ices.dk
  24. Blumer M., Ehrhardt M., Jones J. The environmental fate of stranded crude oil // Deep-Sea Res. 1973. V. 20. Р. 239–259.
  25. Boitsov S.J., Klungsøyr J.H. Concentrations of petroleum hydrocarbons in sediments and seawater from the Barents and Norwegian Seas 2003-2005 // Fisken Havet. 2007. № 3. 52 p.
  26. Boitsov S., Petrova V., Jensen H.K. et al. Sources of polycyclic aromatic hydrocarbons in marine sediments from southern and northern areas of the Norwegian continental shelf // Marine Env. Res. 2013. V. 87. P. 73–84.
  27. Brekke C., Solberg A.H.S. Oil spill detection by satellite remote sensing in the world oceans // Remote Sens. Environ. 2005. V. 95. P. 1–13.
  28. Dalpadado P., Ingvaldsen R.B., Stige L.C. et al. Climate effects on Barents Sea ecosystem dynamics // ICES J. Mar. Science. 2012. V. 69. P. 1303–1316.
  29. Ehrhardt J.D. Negative-ion mass spectra of methylated diuretics // Rapid Commun. Mass Spectrom. 1992. V. 6. № 5. Р. 349–351.
  30. Eide M.S., Longva T., Hoffmann P. et al. Future cost scenarios for reduction of ship CO2 emissions // Maritime Pol. Manag. 2011. V. 38. № 1. Р. 11–37.
  31. Fingas M., Brown C.E. A Review of oil spill remote sensing // Sensors. 2018. V. 18. P. 91. https://doi:10.3390 /s18010091
  32. Gong W., Stephen R. Beagley, Cousineau S.R. et al. Assessing the impact of shipping emissions on air pollution in the Canadian Arctic and northern regions: current and future modelled scenarios // Atmos. Chem. Phys. 2018. V. 18. P. 16653–16687.
  33. Hou P., Eglinton T.I., Montlucon D.B. et al. Degradation and aging of terrestrial organic carbon within estuaries: Biogeochemical and environmental implications // Environ. Sci. Technol. 2021. V. 55. № 15. Р. 10852–10861.
  34. Ivanov A.Yu., Kucheiko A.Yu., Ivonin D.V. et al. Oil spills in the Barents Sea: The results of multiyear monitoring with synthetic aperture radar // Mar. Poll. Bull. 2022. V. 179. P, 113677. https://doi.org/10.1016/j.marpolbul.2022.113677
  35. Jiao L., Zheng G.J., Minh T.B. et. al. Persistent toxic substances in remote lake and coastal sediments from Svalbard, Norwegian Arctic: Levels, sources and fluxes // Envir. Poll. 2009. P. 1342–1351.
  36. Judd A., Hovland M. Seabed Fluid Flow. The Impact on Geology, Biology, and the Marine Environment. Cambridge University Press, 2007. 408 р.
  37. Manual for Monitoring Oil and Dissolved/Dispersed Petroleum Hydrocarbons in Marine Waters and on Beaches. Paris: UNESCO, 1984. 35 p.
  38. Monitoring of hazardous substances in the White Sea and Pechora Sea: Harmonisation with OSPAR’s Coordinated Environmental Monitoring Programme (CEMP). Tromsø: Akvaplan-niva, 2011. 71 р.
  39. Morales-Caselles C., Yunker M.B., Ross P.S. Identification of spilled oil from the MV Marathassa (Vancouver, Canada 2015) using alkyl PAH isomer ratios // Arch. Environ. Contam. Toxicol. 2017. V. 73. P. 118–130.
  40. NAS (National Academy of Sciences). Oil in the Sea III: Inputs, Fates, and Effects. Washington, D.C.: The National Academies Press, 2003. 265 p.
  41. Nemirovskaya I.A., Khramtsova A.V. Features of the hydrocarbon distribution in the bottom sediments of the Norwegian and Barents seas // Fluids. 2021. № 6. 456. https://doi.org/10.3390/fluids6120456
  42. Pau M., Hammer Ø., Chand S. Constraints on the dynamics of pockmarks in the SW Barents Sea: Evidence from gravity coring and high-resolution, shallow seismic profiles // Marine Geology. 2014. V. 355. P. 330–345. 10.1016/j.margeo.2014.06.009' target='_blank'>https://doi: 10.1016/j.margeo.2014.06.009
  43. Raut J.-C., Law K.S., Onishi T. et al. Impact of shipping emissions on air pollution and pollutant deposition over the Barents Sea // Environ. Poll. 2022. V. 298. P. 118832. https://doi.org/10.1016/j.envpol.2022.118832
  44. Tolosa I., Mora S., Sheikholeslam M.R. et al. Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments // Mar. Poll. Bul. 2004. V. 48. P. 44–60.
  45. Venkatesan M.I. Occurrence and possible sources of perylene in marine sediments — A review // Marine Chem. 1988. V. 25. P. 1–27.
  46. Yunker М.В., Macdonald R.W., Ross P.S. et al. Alkane and PAH provenance and potential bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada // Org. Geochem. 2015. № 89–90. P. 80–116.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Summary map of oil pollution of all types (highlighted in black) detected in the Barents Sea during monitoring in 2015-2021 according to satellite radar data (solid line - border between the Norwegian and Barents Seas, dotted line - between Norway and the Russian Federation)

Download (564KB)
3. Fig. 2. Composition of alkanes in bottom sediments of the Murmansk shelf (1, 2) and Teriberka area (3, 4)

Download (179KB)
4. Fig. 3. Spatial and temporal grouping of slicks-slicks on the sea surface detected in the vicinity of station 7105 (84th cruise of the R/V “Akademik Mstislav Keldysh”); white dots show the most probable locations of oil outlets on the sea surface

Download (293KB)
5. Fig. 4. Distribution of Corg (a), AHU (b) and PAH (c) in the upper layer of bottom sediments at station 7105

Download (287KB)
6. Fig. 5. Composition of alkanes in the bottom sediment core thickness at station 7105. The insets show the distribution of the main markers in their composition

Download (207KB)
7. Fig. 6. Composition of PAHs in the bottom sediment core at station 7105 at different horizons

Download (175KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies