Application of Benthic Microbial Fuel Cells in Systems of Year-Round Monitoring of Water Environment Parameters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The bioelectrogenic activity of sediments of natural microbial association of the Peter’s Bay of Japanese sea research was performed in a year-round experiment with parallel temperature, illumination and water electrical conductivity monitoring by means of benthic microbial fuel cell (MFC) and automatic online-monitoring. Several variants of underwater devices, including benthic microbial fuel cells, monitoring water environment sensor,information collection and transmission systems, have been developed. This device make electrical voltage up to 216 mV, specific power up to 239 mW/m2. Electrogenic activity of natural microflora depends on water temperature and reach maximum on summer with temperature about 20–25°C. The introduction of toxicants in form as hydrocarbons and cadmium into the sluge led to the suppression of microbial electrogenesis. However the introduction of inductor substances of microbial sulfidogenesis led to the stimulation of microbial electrogenesis. The possibility of functioning of the benthic MFC in the field of the Peter’s Great Bay in various climatic periods is shown. It is shown that such experimental devices serve as a basis for autonomous stations monitoring the state of the aquatic environment for a long time and in a wide range of conditions change. Thus, automatic registration of temperature, illumination and salinity of water with a frequency of 48 times a day was carried out for 13 months (11/28/2019–12/31/2020). The electrogenic activity of this microbiota upon MFC scaling can potentially become a new renewable energy source for low-power marine electronics, including those used in mariculture.

About the authors

N. N. Volchenko

Kuban State University

Author for correspondence.
Email: volchenko.n@mail.ru
Russian Federation, Krasnodar

А. А. Lazukin

National Research University ITMO

Email: volchenko.n@mail.ru
Russian Federation, St. Petersburg

S. I. Maslennikov

A.V. Zhirmunsky National Scientific Center of Marine Biology Far Eastern Branch, Russian Academy of Sciences

Email: volchenko.n@mail.ru
Russian Federation, Vladivostok

А. А. Pakhlevanyan

A.V. Zhirmunsky National Scientific Center of Marine Biology Far Eastern Branch, Russian Academy of Sciences

Email: volchenko.n@mail.ru
Russian Federation, Vladivostok

А. А. Samkov

Kuban State University

Email: volchenko.n@mail.ru
Russian Federation, Krasnodar

А. А. Khudokormov

Kuban State University

Email: volchenko.n@mail.ru
Russian Federation, Krasnodar

References

  1. Волченко Н.Н., Лазукин А.А., Самков А.А, Худокормов А.А. Биосенсор для определения наличия органических веществ в воде // Патент RU 2 650 634 C1. 2018. Бюл. № 11.
  2. Волченко Н.Н., Лазукин А.А., Масленников С.И. и др. Биоэлектрическая активность донных микробных топливных элементов в круглогодичном полевом эксперименте в условиях Японского моря // 3-й Российский микробиологический конгресс. (Псков, 26 сентября–01 октября 2021 г.). Псков: Псковский государственный университет. 2021. С. 159–160.
  3. Лазукин А.А., Волченко Н.Н., Самков А.А, Худокормов А.А. Биоплато для очистки водоёмов с электронным блоком// Патент RU2753349 C1. 2021. Бюл. № 23.
  4. Масленников С.И., Щукина Г.Ф. Взаимодействие плантаций марикультуры и морских прибрежных экосистем // Рыбное хозяйство. 2018. № 4. С. 96–99.
  5. Самков А.А, Волченко Н.Н., Барышев М.Г. Биотопливный элемент// Патент RU2 657 289 C1. 2018. Бюл. № 17.
  6. Трусенкова О.О., Лобанов В.Б., Лазарюк А.Ю. Течения в юго-западной части залива Петра Великого, Японское море (по данным стационарного буя Wavescan, 2016 г.) // Океанология. 2022. Т. 62. № 3. С. 365–379.
  7. Шевченко О.Г., Масленников С.И., Бложко Т.В. Мониторинг потенциально токсичных микроводорослей в бухте Северной (Славянский залив) в 2008, 2009 гг. // Научные труды Дальрыбвтуза. 2011. Т. 24. С. 34–42.
  8. Arias-Thode Y. M., Hsu L., Anderson G. et al. Demonstration of the SeptiStrand benthic microbial fuel cell powering a magnetometer for ship detection. // Journal of Power Sources. 2017. V. 356. P.419–429.
  9. Cao X., Li X.-N.,Song H.- L., Yu C.-Y. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell // Bioresource Technology. 2015. V. 189. P. 87–93.
  10. Donovan C., Dewan A., Heo D. et al. Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring // Journal of Power Sources. 2013. V. 233. P. 79–85.
  11. Gustave W., Yuan Z., Liu F., Chen Z. Mechanisms and challenges of microbial fuel cells for soil heavy metal(loid)s remediation // Science of The Total Environment. 2021. V. 756. Art. 143865.
  12. Idris M.O., Kim H.-C., Yaqoob A.A., Ibrahim M.N.M. Exploring the effectiveness of microbial fuel cell for the degradation of organic pollutants coupled with bio-energy generation // Sustainable Energy Technologies and Assessments. 2022. V. 52, part B. Art. 102183.
  13. Kubota K., Watanabe T., Maki H. et al. Operation of sediment microbial fuel cells in Tokyo Bay, an extremely eutrophicated coastal sea // Bioresource Technology Reports. 2019. V. 6. P.39–45.
  14. Li W.W., Yu H.-Q. Stimulating sediment bioremediation with benthic microbial fuel cells // Biotechnology Advances. 2015. V. 33. № 1. P.1–12.
  15. Logan B. E. Exoelectrogenic bacteria that power microbial fuel cells // Nature Reviews Microbiology. 2009. V. 7. P. 375–381.
  16. Martins G., Peixoto L., Ribeiro D.C. et al. Towards implementation of a benthic microbial fuel cell in lake Furnas (Azores): Phylogenetic affiliation and electrochemical activity of sediment bacteria // Bioelectrochemistry. 2010. V.78. № 1. P. 67–71.
  17. Noori M.T., Thatikayala D., Pant D. et al. A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology // Bioresource Technology.2022. V. 347. Art. 126 589.
  18. Reimers C.E., Wolf M., Allelau Y., Cheng L. Benthic microbial fuel cell systems for marine applications // Journal of Power Sources. 2022. V. 522. Art. 231 033.
  19. Sajana T.K., Ghangrekar M.M., Mitra A. Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality // Aquacultural Engineering. 2013. V. 57. P. 101–107.
  20. Santoro C., Arbizzani C., Erable B., Leropoulos I.A. Microbial fuel cells: From fundamentals to applications. A review // Journal of power sources. 2017. V. 356. P. 225–244.
  21. Tender L.M., Gray S.A., Grovman E. et al. The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy // Journal of Power Sources. 2008. V. 179. № 2. P. 571–575.
  22. Xu B., Ge Z., He Z. Sediment microbial fuel cells for wastewater treatment: challenges and opportunities // Environmental Science: Water Research & Technology. 2015. V. 1. № 3. P.279–284.
  23. Yamashita T., Hayashi T., Iwasaki H et al. Ultra-low-power energy harvester for microbial fuel cells and its application to environmental sensing and long-range wireless data transmission // Journal of Power Sources. 2019. V. 430. P. 1–11.
  24. Zhao L., Deng J., Hou H. et al. Investigation of PAH and oil degradation along with electricity generation in soil using an enhanced plant-microbial fuel cell // Journal of Cleaner Production. 2019. V. 221. P. 678–683.
  25. Zou S., Guan L., Taylor D.P. et al. Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell // Aquaculture. 2018. V. 497. P. 74–81.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (228KB)
4.

Download (219KB)
5.

Download (173KB)
6.

Download (125KB)
7.

Download (152KB)
8.

Download (71KB)
9.

Download (170KB)

Copyright (c) 2023 Н.Н. Волченко, А.А. Лазукин, С.И. Масленников, А.А. Пахлеванян, А.А. Самков, А.А. Худокормов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies