Forecast of the Dynamics of a Sandy Beach in Complexed Hydrodynamic Conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Changes in the coastal zone under the influence of currents of different nature and wind waves are being investigated. A sandy beach located in the water area of the “Park of the 300th Anniversary of St. Petersburg”, the Neva Bay of the Gulf of Finland of the Baltic Sea, is considered as an object. The beach is actively affected by wind waves and eventually washes away with the intensity of the retreat of the shore of about 4 m per year. For numerical modeling, a set of models is used: SWAN–wind-wave model and COASTOX-UN–a two-dimensional model of currents, sediment transport and bottom reformation. It was developed a model of the Neva Bay and the mouth of the Neva River from the Flood Prevention Facility Complex in the west to the river Neva near the Liteiny Bridge in the east. Based on the reanalysis of wind data, 36 strong storms were selected for a five-year period from 2014 to 2018, for the sequence of which numerical modeling of waves, currents and lithodynamic processes was carried out. It was obtained balances of alluvial and washouts after a ten-years simulated period for beach sectors. To verify the results, satellite images of the modeling area are used, it was found that the model adequately describes the main observed trends in the development of the beach.

作者简介

I. Kantarzhi

National Research University Moscow State University of Civil Engineering

编辑信件的主要联系方式.
Email: kantardgi@yandex.ru
Russia, Moscow

参考

  1. Железняк М.И., Кантаржи И.Г., Леонтьев И.О. Шахин В.М. Математическое моделирование береговых процессов Имеретинской низменности для обоснования берегозащитных мероприятий // Гидротехническое строительство. 2011. № 10. С. 22–29.
  2. Кантаржи И.Г., Мордвинцев К. П. Численное и физическое моделирование в МГСУ морских портовых гидротехнических сооружений // Наука и безопасность. 2015. № 32 (15). С. 2–16.
  3. Кивва С.Л., Железняк М.И., Коломиец П.С., Сорокин М.B. Математическое моделирование наката волн и берегового размыва Имеретинского побережья во время экстремальных штормов // International Journal for Computational Civil and Structural Engineering. 2011. V. 7. Is. 2. P. 77–84.
  4. Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов). Актуализированная редакция СНиП 2.06.04-82*. СП 38.13330.2018. Свод правил. М.: 2019.
  5. Отчет 186-19-ИГМИ. Технический отчет по результатам инженерно-гидрометеорологических изысканий для подготовки проектной документации по объекту: “Яхт-клуб со встроенной трансформаторной подстанцией” по адресу: г. Санкт-Петербург, Южная дорога, участок 21 (Невская губа Финского залива (Балтийское море) в районе западной части Крестовского острова). СПб.: ЗАО “ЛенТИСИЗ”, 2019.
  6. Отчет 1290–2020. ИГМИ. Технический отчет по результатам инженерно-гидрометеорологических изысканий. АО “Фирма УНИКОМ”, 2020.
  7. Отчет о НИР “Оценка влияния гидротехнических сооружений на гидродинамический режим акватории Невской губы, прилегающей к “Парку 300-летия Санкт-Петербурга”. Санкт-Петербургский филиал Федерального государственного бюджетного учреждения науки Института океанологии им. П.П. Ширшова РАН, 2022. 30 с.
  8. Booij N., Ris R.C., Holthuijsen L.H. A third-generation wave model for coastal regions. Part 1. Model description and validation // Journal of Geophysical Research. 1999. № 104 (C4). P. 7649–7666.
  9. Camenen B., Larson M. A bed load sediment transport formula for the nearshore // Estuarine, Coastal and Shelf Science. 2005. № 63. P. 249–260.
  10. Camenen B., Larson M. A unified sediment transport formulation for coastal inlet applications, ERDC/ CHL-TR-06-7. US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 2007.
  11. DHI. MIKE 21 Spectral Wave Module Scientific Documentation, MIKE by DHI. Hørsholm, Denmark. 2017. 56 p.
  12. DHI. MIKE 21 & MIKE 3 Flow Model FM, Hydrodynamic and Transport Module Scientific Documentation. MIKE by DHI. Hørsholm, Denmark. 2017. 64 p.
  13. https://www.mikepoweredbydhi.com/products/mike-21-3.
  14. https://cirpwiki.info/wiki/CMS.
  15. https://www.xmswiki.com/wiki/SMS:SMS.
  16. https://www.compositerunoff.sr.unh.edu/html/Polygons/P6972430.html.
  17. http://www.marineinsitu.eu/dashboard/.
  18. Kantardgi I., Zheleznyak M., Demchenko R. et al. Modeling of Nonlinear Hydrodynamics of the Coastal Areas of the Black Sea by the Chain of the Proprietary and Open-Source Models // EGU General Assembly Conference Abstracts. 2014. V. 16.
  19. Kantardgi I.G., Zheleznyak M.J. Laboratory and numerical study of waves in the port area // Magazine of Civil Engineering. 2016. № 6. P. 49–59.
  20. Kantardgi I.G., Zheleznyak M.I., Anshakov A.S. Numerical modeling of nonlinear hydrodynamics of the coastal areas // Magazine of Civil Engineering. 2019. № 87(3).
  21. Lin L., Demirbilek Z., Mase H. et al. CMS-Wave: A nearshore spectral wave processes model for coastal in-lets and navigation projects. Coastal and Hydraulics Laboratory, Technical Rep. No. ERDC/CHL TR-08-13. Vicksburg, MS: U.S. Army Engineer Research and Development Center. 2008.
  22. Ris R.C., Holthuijsen L.H., Booij N. A third-generation wave model for coastal regions, Part 2. Verification // Journal of Geophysical Research, 1999. № 104 (C4). P. 7667–7681.
  23. Sánchez A, Beck T, Lin L. et al. Coastal Modeling System Draft User Manual. Vicksburg, Mississippi: US Army Corps of Engineers, Engineers Research and Development Center. 2012.
  24. van Rijn L.C. Unified View of Sediment Transport by Currents and Waves. I: Initiation of Motion, Bed Roughness, and Bed-load Transport // Journal of Hydraulic Engineering. 2007. № 133(6). P. 649–667.
  25. van Rijn L.C. Unified View of Sediment Transport by Currents and Waves. II: Suspended Transport // Journal of Hydraulic Engineering. 2007. № 133(6). P. 668–689.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (1MB)
4.

下载 (2MB)
5.

下载 (1MB)
6.

下载 (709KB)
7.

下载 (1MB)

版权所有 © И.Г. Кантаржи, 2023

##common.cookie##