Structure and Spatial Distribution of Mesozooplankton Communities in the Atlantic Sector of the Southern Ocean

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the composition and patterns of spatial distribution of mesozooplankton communities in the waters of the Bransfield Strait, the Antarctic Sound, the Powell Basin of the Weddell Sea and the waters off the Antarctic Peninsula and South Orkney Islands during the austral summer of 2022 are presented. Among the mesozooplankton communities two groups were found to be the most abundant: copepods Calanoides acutus, Metridia gerlachei and Oithona spp., and euphausiids Euphausia superba. The maximum abundance and biomass of the mesozooplankton were found in the warm Antarctic surface deep-sea water off the South Orkney Islands. The minimum values, respectively, were found in the cold modified Weddell Sea waters off the Antarctic Peninsula. Copepods was concentrated in the Bransfield Strait near the South Shetland Islands with sea surface temperature (SST) of –0.5–0.5°С and sea surface salinity (SSS) of 34.5–34.6‰; and the krill E. superba eggs and larvae at different development stages was concentrated in the waters off the South Orkney Islands with SST values of 1–2°С and SSS values of 34.3–34.5‰. Four groups of mesozooplankton communities at different composition, abundance, and taxa dominance were identified. The results of this and future study have practical implications for monitoring the state of the changing ecosystem of the Southern Ocean.

About the authors

V. V. Kasyan

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch,
Russian Academy of Sciences (NSCMB FEB RAS)

Author for correspondence.
Email: valentina-k@yandex.ru
Russia, Vladivostok

References

  1. Воронина Н.М. Экосистемы пелагиали Южного океана. 1984. М.: Наука, 206 с.
  2. Макаров Р.Р. Личинки Euphausia superba Dana в планктоне моря Скотия // Труды ВНИРО. 1974. Т. 99. С. 84–102.
  3. Макаров Р.Р., Меньшенина Л.Л. Общие черты распределения личинок эвфаузиид в водах Антарктики // Океанология. 1989. Т. 29. № 5. С. 825–831.
  4. Перцова К.Н. Личинки эвфаузиид Антарктики // Труды института океанологии АН СССР. 1976. Т. 105. С. 147–170.
  5. Сологуб Д.О. Распределение и возрастной состав личинок эвфаузиид (Euphausiacea) в районе Антарктического полуострова // Труды ВНИРО. 2015. Т. 154. С. 3–15.
  6. Спиридонов В.А., Залота А.К, Яковенко В.А., Горбатенко К.М. Состав популяции и транспорт молоди антарктического криля в районе бассейна Пауэлла (северо-западная часть моря Уэдделла) в январе 2020 г // Труды ВНИРО. 2020. Т. 181. С. 33–51.
  7. Anisimov O.A., Vaughan D.G., Callaghan T.V. et al. Polar regions (Arctic and Antarctic). In: Parry M.L., Canziani O.F., Palutikof J.P.et al. (eds). Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: University Press, 2007. P. 653− 685.
  8. Atkinson A. Life cycle strategies of epipelagic copepods in the Southern Ocean // Journal of Marine Systems. 1998. V. 15. Iss. 1–4. P. 289–311. https://doi.org/10.1016/S0924-7963(97)00081-X
  9. Atkinson A., Tarling G.A., Shreeve R.S. et al. Natural growth rates in Antarctic krill (Euphausia superba). II. Predictive models based on food, temperature, body length, sex, and maturity stage // Limnol. Oceanogr. 2006. V. 51. No. 2. P. 973–987.
  10. Bitiutskii D.G., Samyshev E.Z., Minkina N.I. et al. Distribution and demography of Antarctic krill and salps in the Atlantic sector of the Southern Ocean during austral summer 2021–2022 // Water. 2022. V. 14. No. 23. 3812. https://doi.org/10.3390/w14233812
  11. Boltovskoy D. South Atlantic Zooplankton. 1999. Leiden: Backhuys Publishers, 868 pp.
  12. Clarke K.R., Gorley R.N. PRIMER v6: User Manual/Tutorial. 2006. Plymouth: PRIMER-E. 192 pp.
  13. Cook A.J., Fox A.J., Vaughan D.G., Ferrigno J.G. Retreating Glacier fronts on the Antarctic Peninsula over the past half-century // Science. 2005. V. 308. P. 541–544. https://doi.org/10.1126/science.1104235
  14. Delgado L.E., Jana R., Mari V.H. Testing hypotheses on life-cycle models for Antarctic calanoid copepods, using qualitative, winter, zooplankton samples // Polar Biology. 1998. V. 20. No. 1. P. 74–76. https://doi.org/10.1007/s003000050278
  15. Deppeler S.L., Davidson A.T. Southern Ocean phytoplankton in a changing climate // Frontiers in Marine Science. 2017. V. 4. 40. https://doi.org/10.3389/fmars.2017.00040
  16. Fedotova A.A., Kashin S.V. Interannual variations of water mass properties in the central basin of the Bransfield Strait. In: Morozov E.G., Flint M.V., Spiridonov V.A. (Eds.). Antarctic Peninsula Region of the Southern Ocean. Oceanography and Ecology // Advances in Polar Ecology. V. 6. 2021. Springer: Cham, Switzerland, P. 131–141. https://doi.org/10.1007/978-3-030-78927-5_9.
  17. Fedotova A.A., Stepanova S.V. Water mass transformation in the Powell Basin. In: Morozov E.G., Flint M.V., Spiridonov V.A. (Eds.). Antarctic Peninsula Region of the Southern Ocean. Oceanography and Ecology // Advances in Polar Ecology. V. 6. 2021. Springer: Cham, Switzerland, P. 115–129. https://doi.org/10.1007/978-3-030-78927-5_8.
  18. Frey D.I., Krechik V.A., Morozov E.G. et al. Water exchange between deep basins of the Bransfield Strait // Water. 2022. V. 14. No. 20. 3193. https://doi.org/10.3390/w14203193
  19. Gao Q., Xu Z., Huang H. et al. Geographical distribution and age composition of Euphausia superba larvae (Crustacea: Euphausiacea) in the South Shetland Islands region and southern Scotia Sea in relation to environmental conditions // Acta Oceanol. Sin. 2013. V. 32. P. 59–67.
  20. Garcia M.D., Dutto M.S., Chazarreta C.J. et al. Micro- and mesozooplankton successions in the Antarctic coastal environment during a warm year // PlosONE, 2020. V. 15. No. 5. e0232614. https://doi.org/10.1371/journal.pone.0232614
  21. Hewes C.D., Reiss C.S., Holm-Hansen O.A. quantitative analysis of sources for summertime phytoplankton variability over 18 years in the South Shetland Islands (Antarctica) region // Deep-Sea Res. 2009. V. 56. P. 1230− 1241.
  22. Heywood K.J., Garabato A.C.N., Stevens D.P., Muench R.D. On the fate of the Antarctic Slope Front and the origin of the Weddell Front // J. Geophys. Res. 2004. V. 109. C06021. https://doi.org/10.1029/2003JC002053
  23. Hofmann E.E., Klinck J.M., Locarnini R.A., Fach B. Krill transport in the Scotia Sea and environs // Antarct. Sci. 1998. V. 10. P. 406–415. https://doi.org/10013/epic.21917.d001.
  24. Johnston N.M.; Murphy E.J.; Atkinson A. et al. Status, change, and futures of zooplankton in the Southern Ocean // Front. Ecol. Evol. 2022. V. 9. 624692. https://doi.org/10.3389/fevo.2021.624692
  25. Kasyan V.V. Age structure and spatial distribution of Euphausia superba larvae off the Antarctic Peninsula, Southern Ocean // Water. 2022. V. 14. 3196. https://doi.org/10.3390/w14203196
  26. Kasyan V.V., Bitiutskii D.G., Mishin A.V. et al. Composition and distribution of plankton communities in the Atlantic Sector of the Southern Ocean // Diversity. 2022. V. 14. No. 11. 923. https://doi.org/10.3390/d14110923
  27. Krechik V.A., Frey D.I., Morozov E.G. Peculiarities of water circulation in the central part of the Bransfield Strait in January 2020 // Doklady Earth Sciences. 2021. V. 496, No. 1. P. 92–95. https://doi.org/10.1134/S1028334X21010116
  28. Lee W., Kim S., Kang S.et al. Distribution and abundance of zooplankton in the Bransfield Strait and the western Weddell Sea during austral summer // Ocean and Polar Research. 2004. V. 26. No. 4. P. 607–618. https://doi.org/10.4217/OPR.2004.26.4.607
  29. Loeb V.J., Santora J.A. Population dynamics of Salpa thompsoni near the Antarctic Peninsula: growth rates and interannual variations in reproductive activity (1993–2009) // Progr. in Oceanog. 2012. V. 96. Iss. 1. P. 93–107. https://doi.org/10.1016/j.pocean.2011.11.001
  30. Meredith M.P., King J.C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century // Geophys. Res. Lett. 2005. V. 32. L19604. https://doi.org/10.1029/2005gl024042
  31. Meyer B., Atkinson A., Blume B., Bathmann U.V. Feeding and energy budgets of larval Antarctic krill Euphausia superba in summer // Mar. Ecol. Prog. Ser. 2003. V. 57. P. 167–177.
  32. Mizdalski E. Weight and length data of zooplankton in theWeddell Sea in austral spring 1986 (ANT V/3) // Ber. Polarforsch. 1988. V. 55. P. 1–72.
  33. Moline M.A., Claustre H., Frazer T.K.et al. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend // Global Change Biol. 2004. V. 10, P. 1973–1980. https://doi.org/10.1111/j.1365-2486.2004.00825.x
  34. Montes-Hugo M., Vernet M., Martinson D. et al. Variability on phytoplankton size structure in the western Antarctic Peninsula (1997–2006) // Deep Sea Res. II. 2008. V. 55. P. 2106–2117. https://doi.org/10.1016/j.dsr2.2008.04.036
  35. Morozov E.G., Flint M.V., Spiridonov V.A. Antarctic Peninsula region of the Southern Ocean // Advances in Polar Ecology; Springer: Cham, Switzerland, 2021. V. 6. 433 p. .
  36. Morozov E.G., Krechik V.A., Frey D.I. et al. Frontal zone between relatively warm and cold waters in the Northern Weddell Sea. In: Morozov E.G., Flint M.V., Spiridonov V.A. (Eds.). Antarctic Peninsula Region of the Southern Ocean. Oceanography and Ecology // Advances in Polar Ecology. V. 6. 2021. Springer: Cham, Switzerland, P. 31–54. https://doi.org/10.1007/978-3-030-78927-5_3
  37. Pakhomov E A., Pshenichnov L.K., Krot A. et al. Zooplankton distribution and community structure in the Pacific and Atlantic Sectors of the Southern Ocean during austral summer 2017–18: A pilot study conducted from Ukrainian long-liners // J. Mar. Sci. Eng. 2020. V. 8. 488. https://doi.org/10.3390/jmse8070488
  38. Peck L.S., Barnes D.K. A., Cook A.J. et al. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica // Glob. Change Biol. 2010. V. 16. P. 2614–2623. https://doi.org/10.1111/j.1365-2486.2009.02071.x
  39. Pinkerton M.H., Decima M., Kitchener J.A. et al. Zooplankton in the Southern Ocean from the continuous plankton recorder: distributions and long-term change // Deep Sea Res. I. 2020. V. 162. 103303. https://doi.org/10.1016/j.dsr.2020.103303
  40. Razouls C., de Bovee F., Kouwenberg J., Desreumaux N. Diversity and geographic distribution of marine planktonic copepods. Sorbonne University, CNRS. 2005-2021. Available at http://copepodes.obs-banyuls.fr/en/ (accessed February 2022).
  41. Ross R.M., Quetin L.B., Kirsch E. Effect of temperature on developmental times and survival of early larval stages of Euphausia superba Dana // J. Exp. Mar. Bio. Ecol. 1988. V. 121. P. 55–71.
  42. Sangra P., Gordo C., Hernandez-Arencibia M. et al. The Bransfield Current system // Deep Sea Res. I. 2011. V. 58. P. 390–402. https://doi.org/10.1016/j.dsr.2011.01.011
  43. Schmidt K., Atkinson A., Venables H.J., Pond D.W. Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms // Deep Sea Res. II. 2012. V. 59–60. P. 159–172.
  44. Siegel V., Watkins J.L. Distribution, biomass and demography of Antarctic krill, Euphausia superba // Advances in Polar Ecology. Biology and ecology of Antarctic krill. 2016. V. 1. P. 21–100.
  45. Spiridonov V.A. Spatial and temporal variability in reproductive timing of Antarctic krill (Euphausia superba) // Polar Biol. 1995. V. 15. P. 161–174. https://doi.org/10.1007/BF00239056
  46. Stammerjohn S.E., Martinson D.G., Smith R.C. et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Nino – Southern Oscillation and Southern Annular Mode variability // J. Geophys. Res Oceans. 2008. V. 113. C03S90.
  47. Tarling G.A., Peck V., Ward P. et al. Effects of acute ocean acidification on spatially-diverse polar pelagic foodwebs: insights from on-deck microcosms // Deep Sea Res. II. 2016. V. 127. P. 75–92.
  48. Thompson A.F., Heywood K.J., Thorpe S.E. et al. Surface circulation at the tip of the Antarctic Peninsula from drifters // J. Phys. Oceanog. 2009. V. 39. P. 3–26.
  49. Tokarczyk R. Classification of water masses in the Bransfield Strait and southern part of the Drake Passage using a method of statistical multidimensional analysis // Polish Pol. Res. 1987. V. 8. P. 333–366.
  50. Trifoglio N.L., Olguin Salinas H.F., Franzosi C.A., Alder V.A. Annual cycle of phytoplankton, protozoa and diatom species from Scotia Bay (South Orkney Islands, Antarctica): community structure prior to, during and after an anomalously low sea ice year // Progress in Oceanography. 2022. V. 204. 102807. https://doi.org/10.1016/j.pocean.2022.102807
  51. Voronina N.M. Comparative abundance and distribution of major filter-feeders in the Antarctic pelagic zone // J. of Mar. Sys. 1998. V. 17. Iss. 1–4. P. 375–390. https://doi.org/10.1016/S0924-7963(98)00050-5
  52. WoRMS Editorial Board. World Register of Marine Species. 2015. http://www.marinespecies.org.
  53. Yakovenko V.A., Spiridonov V.A., Gorbatenko K.M. et al. Macro- and mesozooplankton in the Powell Basin (Antarctica): species composition and distribution of abundance and biomass in February 2020 // Antarctic Peninsula Region of the Southern Ocean. Springer: Cham, Switzerland, 2021; V. 6. P. 131–141. https://doi.org/10.1007/978-3-030-78927-5_27.
  54. Zhou X.Q., Zhu G.P., Hu S. Influence of tides on mass transport in the Bransfield Strait and the adjacent areas // Antarctic Polar Sci. 2020. V. 23. 100506. https://doi.org/10.1016/j.polar.2020.100506

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (3MB)
4.

Download (634KB)
5.

Download (571KB)

Copyright (c) 2023 В.В. Касьян

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».