Рt/SAPO-11 Catalytic Systems Differing in Acidity and Secondary Pore Structure in n-Hexadecane Hydroisomerization

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

SAPO-11 molecular sieve samples differing in the acid properties, crystal morphology and size, and secondary pore structure characteristics were obtained by crystallization of reaction gels with the SiO2/Al2O3 molar ratios of 0.1 and 0.3, prepared using aluminum isopropoxide or boehmite as an aluminum source. Platinum (0.5 wt %) was deposited onto the molecular sieves prepared, and the catalytic properties of the resulting samples in n-hexadecane hydroisomerization were studied. The hydrocarbon conversion on these samples varies from 76.8 to 87.7 wt %, and the isoparaffin formation selectivity, from 76.7 to 91.2 wt %.

作者简介

M. Agliullin

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: maratradikovich@mail.ru
450075, Ufa, Russia

D. Serebrennikov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
450075, Ufa, Russia

A. Khazipova

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
450075, Ufa, Russia

A. Malunov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
450075, Ufa, Russia

K. Dement'ev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119091, Moscow, Russia

B. Kutepov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: petrochem@ips.ac.ru
450075, Ufa, Russia

参考

  1. Akhmedov V.M., Al-Khowaiter S.H. Recent advances and future aspects in the selective isomerization of high n-alkanes // Catalysis Reviews. 2007. V. 49. P. 33-139. https://doi.org/10.1080/01614940601128427
  2. Wang W., Wu W., Liu C.-J. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure // Catalysis Science & Technology. 2019. V. 9. № 16. P. 4162-4187. https://doi.org/10.1039/C9CY00499H
  3. Deldari Н. Suitable catalysts for hydroisomerization of long-chain normal paraffins // Applied Catalysis A: General. 2005. V. 293. P. 1-10. https://doi.org/10.1016/j.apcata.2005.07.008
  4. Database of Zeolite Structure. Available online: http://www.iza-structure.org/databases.
  5. Barthomeuf D. Topological model for the compared acidity of SAPOs and SiAl zeolites // Zeolites. 1994. V. 14. № 6. P. 394-401. https://doi.org/10.1016/0144-2449(94)90164-3
  6. Potter M.E. Down the microporous rabbit hole of silicoaluminophosphates: recent developments on synthesis, characterization, and catalytic applications // ACS Catal. 2020. V. 10. P. 9758-9789. https://doi.org/10.1021/acscatal.0c02278
  7. Bértolo R., Silva J.M., Ribeiro M.F., Martins A., Fernandes A. Microwave synthesis of SAPO-11 materials for long chain n-alkanes hydroisomerization: effect of physical parameters and chemical gel composition // Applied Catalysis A: General. 2017. V. 542. P. 28-37. https://doi.org/10.1016/j.apcata.2017.05.010. EDN YFECAC
  8. Hartmann M., Elangovan S.P. Chapter 4 - Catalysis with microporous aluminophosphates and silicoaluminophosphates containing transition metals // Advances in Nanoporous Materials. 2010. V. 1. № 1. P. 237-312. https://doi.org/10.1016/S1878-7959(09)00104-2. EDN RJPRYR
  9. Agliullin M.R., Kutepov B.I., Ostroumova V.A., Maximov A.L. Silicoaluminophosphate molecular sieves SAPO-11 and SAPO-41: Synthesis, properties, and applications for hydroisomerization of C16+ n-paraffins. Part 2: Current state of research on methods to control the crystal morphology, dispersion, acidic properties, secondary porous structure, and catalytic properties of SAPO-11 and SAPO-41 in hydroisomerization of C16+ n-paraffins (a review) // Petrol. Chemistry. 2021. V. 61. № 8. P. 852-870. doi: 10.1134/S096554412108003X. EDN HRBMDS
  10. Yang Z., Li J., Liu Y., Liu C. Effect of silicon precursor on silicon incorporation in SAPO-11 and their catalytic performance for hydroisomerization of n-octane on Pt-based catalysts // J. Energy Chem. 2017. V. 26. P. 688-694. https://doi.org/10.1016/j.jechem.2017.02.002
  11. Wang X., Zhang W., Guo Sh., Zhao L., Xiang H. Optimization of the synthesis of SAPO-11 for the methylation of naphthalene with methanol by varying templates and template content // Braz J. Chem. Soc. 2013. V. 24. P. 1180-1187. https://doi.org/10.5935/0103-5053.20130152
  12. Fernandes A., Ribeiro F., Lourenço J., Gabelica Z. An elegant way to increase acidity in SAPOs: use of methylamine during synthesis // Studies in Surface Science and Catalysis. 2008. V. 174. P. 281-284. https://doi.org/10.1016/S0167-2991(08)80197-8
  13. Guo L., Fan Y., Bao X., Shi G., Liu H. Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization // J. of Catalysis. 2013. V. 301. P. 162-173. https://doi.org/10.1016/j.jcat.2013.02.001. EDN YEPASD
  14. Chen B., Huang Y. Dry gel conversion synthesis of SAPO- and CoAPO-based molecular sieves by using structurally related preformed AlPO precursors as the starting materials // Micropor. Mesopor. Mater. 2009. V. 123. P. 71-77. https://doi.org/10.1016/j.micromeso.2009.03.025
  15. Agliullin M.R., Kolyagin Yu.G., Serebrennikov D.V., Grigor'eva N.G., Dmitrenok A.S., Maistrenko V.N., Dib E., Mintova S., Kutepov B.I. Acid properties and morphology of SAPO-11 molecular sieve controled by silica source // Micropor. Mesopor. Mater. 2022. V. 338. P. 111962. https://doi.org/10.1016/j.micromeso.2022.111962
  16. Agliullin M.R., Yakovenko R.E., Kolyagin Y.G., Serebrennikov D.V., Vildanov F.S., Prosochkina T.R., Kutepov B.I. Relation between morphology and porous structure of SAPO-11 molecular sieves and chemical and phase composition of silicoaluminophosphate gels // Gels. 2022. V. 8. P. 142. https://doi.org/10.3390/gels8030142
  17. Tamura M., Shimizu, A. Satsuma. Comprehensive IR study on acid/base properties of metal oxides // Applied Catalysis A: General. 2012. V. 433-434. P. 135-145. https://doi.org/10.1016/j.apcata.2012.05.008. EDN YAETMU
  18. Yadav R., Sakthivel A. Silicoaluminophosphate molecular sieves as potential catalysts for hydroisomerization of alkanes and alkenes // Applied Catalysis A: General. 2014. V. 481. P. 143-160. https://doi.org/10.1016/j.apcata.2014.05.010
  19. Höchtl M., Jentys A., Vinek H. Hydroisomerization of heptane isomers over Pd/SAPO molecular sieves: influence of the acid and metal site concentration and the transport properties on the activity and selectivity // J. of Catalysis. 2000. V. 190. № 2. P. 419-432. https://doi.org/10.1006/jcat.1999.2761

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##