Исследование новых высокоэффективных реагентов для пенного дренажа газовых скважин (обзор)

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрены предпосылки исследований и значение реагентов для пенного дренажа газовых скважин, механизмы пенообразования и обеспечения устойчивости пены, проанализированы преимущества и недостатки обычных реагентов для пенного дренажа. Новые синтезированные пеноотводящие реагенты обладают более высокой стабильностью пены, а добавление полимера значительно улучшает их характеристики. Применение димерных поверхностно-активных веществ (Gemini ПАВ) открывает новые возможности для пенного дренажа при добыче газа. Для дальнейшего повышения устойчивости пены в газовых залежах различных типов используются наночастицы. Приведены перспективы применения высокоэффективных, экологически чистых и пригодных для вторичной переработки реагентов для пенного дренажа.

Об авторах

Y. Q. Sun

Northeast Petroleum University;The Fourth Oil Extraction Plant of Daqing Oilfield Co

Email: petrochem@ips.ac.ru
163000, Daqing, China; 163000, Daqing, China

Y. P. Zhang

Oil Production Engineering Research Institute of Daqing Oilfield Co

Email: 602693658@qq.com
163000, Daqing, China

Q. W. Liu

Northeast Petroleum University

Email: petrochem@ips.ac.ru
163000, Daqing, China

Z. Z. Fan

Northeast Petroleum University

Email: petrochem@ips.ac.ru
163000, Daqing, China

N. Li

Oil Production Engineering Research Institute of Daqing Oilfield Co

Email: petrochem@ips.ac.ru
163000, Daqing, China

A. Q. Wei

The Fourth Oil Extraction Plant of Daqing Oilfield Co

Автор, ответственный за переписку.
Email: petrochem@ips.ac.ru
163000, Daqing, China

Список литературы

  1. Yue Q.C. A Study of management system based on energy crisis // IOP Conf. Ser.: Earth Environ. 2018. V. 153. № 3. P. 032001. https://doi.org/10.1088/1755-1315/153/3/032001
  2. Xiong W., Zhang S.L., Wang L., Zhang L.N.X., Ma J., Zeng K., Tian J., Wang M., Li R., Jing Z., Wang Q., Zhu T., Wang L., Liu J., Hao L., Xu S., Duan R. Feasibility study of swash plate plunger pump system in drainage gas recovery process // J. Phys.: Conf. Ser. 1983. P. 012036. https://doi.org/10.1088/1742-6596/1983/1/012036
  3. Yang S.R., Xu D., Liu L.L., Duan C., Xiu L.Q. Research of drainage gas recovery technology in gas wells // Open J. Fluid Dyn. 2014. V 4. P. 154-162. https://doi.org/10.4236/ojfd.2014.42014
  4. Bowman C.W.,Collins J.A. Increasing the production from marginal gas wells. SPE Int. Oilfield Corrosion Symp. May 30, 2006, Aberdeen, UK, Aberdeen, Scotland, Paper № SPE-100514-MS. https://doi.org/10.2118/100514-MS
  5. Wang J., Zhou F.J., Xue Y.P., Yao E.D., Zhang L., Fan F., Wang R. The adsorption properties of a novel ether nanofluid for gas wetting of tight sandstone reservoir // Pet. Sci. Technol. 2019. V. 37. № 12. P. 1436-1454. https://doi.org/10.1080/10916466.2019.1590402
  6. Chen M., Sun J., Gao E., Tian H.N. A Summary of wellbore fluid accumulation and drainage gas production technology in gas wells // IOP Conf. Ser.: Earth Environ. Sci. 2021. V. 621. P. 012113. https://doi.org/10.1088/1755-1315/621/1/012113
  7. Xiong C.M., Gao G.Q., Zhang J.J., Nan L., Xu W.L., Wu J.W., Li J., Zhang N. Nanoparticle foaming agents for major gas fields in China // Pet. Explor. Dev. 2019. V. 46. № 5. P. 1022-1030. https://doi.org/10.1016/S1876-3804(19)60259-4
  8. Wang H.B., Liu J., Yang Q., Wang Y., Li S.Y., Sun S.Q., Hu S.Q. Study on the influence of the external conditions and internal components on foam performance in gas recovery // Chem. Eng. Sci. 2021. V. 231. P. 116279. https://doi.org/10.1016/j.ces.2020.116279
  9. Tavakkoli M., Panuganti S.R., Khemka Y., Valdes H., Vargas F.M. Foam-assisted gas lift: A novel experimental setup to investigate the feasibility of using a commercial surfactant for increasing oil well productivity // J. Petrol. Sci. Eng. 2021. V. 201. P. 108496. https://doi.org/10.1016/j.petrol.2021.108496
  10. Farina L., Passucci C., Lullo A.D., Negri E., Anderson S., Page S. Artificial lift optimization with foamer technology in the Alliance shale gas field. SPE Annual Technical Conf. and Exhibition, October 8-10, 2012, San Antonio, Texas, USA, https://doi.org/10.2118/160282-MS
  11. Lee Y., Baek K.H., Choe K., Han C. Development of mass production type rigid polyurethane foam for LNG carrier using ozone depletion free blowing agent // Cryogenics. 2016. V. 80. Pt. 1. P. 44-51. https://doi.org/10.1016/j.cryogenics.2016.09.002
  12. Hajimohammadi A., Ngo T., Mendis P. How does aluminium foaming agent impact the geopolymer formation mechanism? // Cem. Concr. Compos. 2017. V. 80. P. 277-286. https://doi.org/10.1016/j.cemconcomp.2017.03.022
  13. Farag A., Robertson T., Kerem M., Montero J. Foam assist in a gas-lifted oil well. SPE Middle East Artificial Lift Conf. and Exhibition, Nov. 30-Dec. 1, 2016, Manama, Kingdom of Bahrain. https://doi.org/10.2118/184217-ms
  14. Anestopoulos I., Kiousi D.E., Klavaris A., Galanis A., Salek K., Euston S.R., Pappa A., Panayiotidis M.I. Surface active agents and their health-promoting properties: Molecules of multifunctional significance // Pharmaceutics. 2020. V. 12. P. 688. https://doi.org/10.3390/pharmaceutics12070688
  15. Hu X.Y., Li Y., He X.J., Li C.X., Li Z.Q., Cao X.L., Xin X., Somasundaran P. Structure-behavior-property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches // J. Phys. Chem. B. 2011. V. 116. P. 160-167. https://doi.org/10.1021/jp205753w
  16. Kurrey R., Mahilang M., Deb M.K., Shrivas K. Analytical approach on surface active agents in the environment and challenges // Trends Environ. Anal. Chem. 2019. V. 21. P. e00061. https://doi.org/10.1016/j.teac.2019.e00061
  17. Adebayo A.R. Sequential storage and in-situ tracking of gas in geological formations by a systematic and cyclic foam injection - A useful application for mitigating leakage risk during gas injection // J. Nat. Gas Sci. Eng. 2019. V. 62. P. 1-12. https://doi.org/10.1016/j.jngse.2018.11.024
  18. Mansour F.R., Arrua R.D., Desire C.T., Hilder E.F. Non-ionic surface active agents as additives toward a universal porogen system for porous polymer monoliths // Anal. Chem. 2017. V. 93. P. 2802-2810. https://doi.org/10.1021/acs.analchem.0c03889
  19. Pandey S., Bagwe R. P., Shah D.O. Effect of counterions on surface and foaming properties of dodecyl sulfate // J. Colloid Interface Sci. 2003. V. 267. P. 160-166. https://doi.org/10.1016/j.jcis.2003.06.001
  20. Wu J.W., Jia W.F., Zhang R.S., Cen X.Q., Wang H., Niu J. The development and field test of high efficient foam unloading agent based on Gemini surfactant and nanomaterials. SPE Int. Conf. on Oilfield Chemistry, April 8-9, 2019. Galveston, Texas, USA. https://doi.org/10.2118/193572-MS
  21. Madhu H.C., Kailas S.V. Fabrication of localised aluminium foam by a novel polymeric blowing agent // Mater. Charact. 2018. V. 142. P. 340-351. https://doi/org/10.1016/j.matchar.2018.05.059
  22. Xu L., Rad M.D., Telmadarreie A., Qian C., Liu C.G., Bryant S. L., Dong M.Z. Synergy of surface-treated nanoparticle and anionic-nonionic surfactant on stabilization of natural gas foams // Colloids Surf. A: Physicochem. Eng. Asp. 2018. V. 550. P. 176-185. https://doi.org/10.1016/j.colsurfa.2018.04.046
  23. Gao F.F., Liu G.K., Yuan S.L. The effect of betaine on the foam stability: Molecular simulation // Appl. Surf. Sci. 2017. V. 407. P. 156-161. https://doi.org/10.1016/j.apsusc.2017.02.087
  24. Solesa M., Sevic S. Production optimization challenges of gas wells with liquid loading problem using foaming agents. SPE Russ. Oil and Gas Technical Conf. and Exhibition, 2006. https://doi.org/10.2118/101276-RU
  25. Kadijani J.A., Narimani E. Simulation of hydrodesulfurization unit for natural gas condensate with high sulfur content // Appl. Petrochem. Res. 2016. V. 6. P. 25-34. https://doi.org/10.1007/s13203-015-0107-0
  26. Zhang C.X., Wang Z.Y., Li J., Xiong Z.G. The experimental study of foaming system which suitable for high temperature foam gas driving. Proc. of the 2015 4th Int. Conf. on Sensors, Measurement and Intelligent Materials, 2016. https://doi.org/10.2991/icsmim-15.2016.150
  27. Liu E.H. The application of high temperature foam surface active agent used in heavy oil thermal recovery // Appl. Mech. Mater. 2014. V. 672-674. P.700-703. https://doi.org/10.4028/www.scientific.net/AMM.672-674.700
  28. Maini B.B., Ma V. Laboratory evaluation of foaming agents for high-temperature applications - I. Measurements of foam stability at elevated temperatures and pressures // J. Can. Pet. Technol. 1986. V. 25. № 6. P. PETSOC-86-06-05. https://doi.org/10.2118/86-06-05
  29. Zhang Q., Wei X.L., Liu J., Sun D.Z., Zhang X.X., Zhang C., Liu J.F. Effects of inorganic salts and polymers on the foam performance of 1-tetradecyl-3-methylimidazolium bromide aqueous solution // J. Surfactants Deterg. 2012. V. 15. P. 613-621. https://doi.org/10.1007/s11743-012-1342-3
  30. Nakayama S., Yusa S., Nakamura Y., Fujii S. Aqueous foams stabilized by temperature-sensitive hairy polymer particles // Soft Matter. 2015. V. 11. № 47. P. 9099-9106. https://doi.org/10.1039/c5sm02187a
  31. Yang K., Li S., Zhang K., Wang Y. Synergy of hydrophilic nanoparticle and nonionic surfactant on stabilization of carbon dioxide-in-brine foams at elevated temperatures and extreme salinities // Fuel. 2021. V. 288. P. 119624. https://doi.org/10.1016/j.fuel.2020.119624
  32. Feng J.J., Yan Z.H., Song J.M., He J., Zhao G., Fan H.M. Study on the structure-activity relationship between the molecular structure of sulfate Gemini surfactant and surface activity, thermodynamic properties and foam properties // Chem. Eng. Sci. 2021. V. 245. P. 116857. https://doi.org/10.1016/j.ces.2021.116857
  33. Azdarpour A., Rahmani O., Mohammadian E., Parak M., Daud A.R.M., Junin R. The effects of polymer and surfactant on polymer enhanced foam stability. 2013 IEEE Business Engineering and Industrial Applications Colloquium (BEIAC). 2013. P. 97-102. https://doi.org/10.1109/BEIAC.2013.6560275
  34. Sun Y.G., Li Y.P., Li C.X., Zhang D.R., Cao X.L., Song X.W., Wang Q.W., Li Y. Molecular array behavior and synergistic effect of sodium alcohol ether sulphate and carboxyl betaine/sulfobetaine in foam film under high salt conditions // Colloids Surf. A: Physicochem. Eng. Asp. 2015. V. 480. P. 138-148. https://doi.org/10.1016/j.colsurfa.2015.02.042
  35. Lai L.D., Zhang T.L., Zheng, C.C., Study of foam drainage agent based on g-C3N4 nanosheets reinforced stabilization // Colloids Surf. A: Physicochem. Eng. Asp. 2023. V. 657. P. 998-1004. https://doi.org/10.1016/j.colsurfa.2022.130607
  36. Zhao L., Li A.F., Chen K., Tang J.J., Fu S.S. Development and evaluation of foaming agents for high salinity tolerance // J. Petrol. Sci. Eng. 2012. V. 81. P. 18-23. https://doi.org/10.1016/j.petrol.2011.11.006
  37. Fukui S., Hirai T., Nakamura Y., Fujii S. pH-Dependent foam formation // Polymers. 2020. V. 12. P. 511. https://doi.org/10.3390/polym12030511
  38. Ito M., Takano K., Hanochi H., Asaumi Y., Yusa S., Nakamura Y., Fujii S. pH-Responsive aqueous bubbles stabilized with polymer particles carrying poly(4-vinylpyridine) colloidal stabilizer // Front. Chem. 2018. July 17. https://doi.org/10.3389/fchem.2018.00269
  39. Wang H.T., Li J., Wang Z., Wang D.M., Zhan H.H. Experimental investigation of the mechanism of foaming agent concentration affecting foam stability // J. Surfact. Deterg. 2017. V. 20. P. 1443-1451. https://doi.org/10.1007/s11743-017-2004-2
  40. Gieg L.M., Duncan K.E., Suflita J.M. Bioenergy production via microbial conversion of residual oil to natural gas // Appl. Environ. Microbiol. 2008. V. 74. P. 3022-3029. https://doi.org/10.1128/aem.00119-08
  41. Alvarado V., Manrique E. Enhanced oil recovery: An update review // Energies. 2010. V. 3. № 9. P. 1529-1575. https://doi.org/10.3390/en3091529
  42. Osei-Bonsu K., Shokri N., Grassia P. Foam stability in the presence and absence of hydrocarbons: From bubble- to bulk-scale // Colloids Surf. A: Physicochem. Eng. Asp. 2015. V. 481. P. 514-526. https://doi.org/10.1016/j.colsurfa.2015.06.023
  43. Chen S.Y., Hou Q.F., Zhu Y.Y., Li W.J., Chang Z.D. Foam stability of mixed system of fluorocarbon and hydrocarbon surfactants: Effect of polymer and oil // Adv. Mat. Res. 2013. V. 803. P. 85-89. https://doi.org/10.4028/www.scientific.net/AMR.803.85
  44. Simjoo M., Rezaei T., Andrianov A., Zitha P.L.J. Foam stability in the presence of oil: Effect of surfactant concentration and oil type // Colloids Surf. A: Physicochem. Eng. Asp. 2013. V. 438. P. 148-158. https://doi.org/10.1016/j.colsurfa.2013.05.062
  45. Lee J., Nikolov A., Wasan D. Surfactant micelles containing solubilized oil decrease foam film thickness stability // J. Colloid Interface Sci. 2014. V. 415. P. 18-25. https://doi.org/10.1016/j.jcis.2013.10.014
  46. Xu R., Yang L. A new binary surfactant mixture improved foam performance. SPE Int. Symp. on Oilfield Chemistry, 1995, San Antonio, Texas. https://doi.org/10.2118/29004-MS
  47. Qiao S.Y., Liu Q.W., Fan Z.Z., Wang J.G., Xu J.J. Synthesis and analysis of foam drainage agent for gas well in Jilin Oilfield // IOP Conf. Ser.: Earth Environ. Sci. 2017. V. 64. P. 012025. hpps://doi.org/10.1088/1755-1315/64/1/012025
  48. Yang J., Jovancicevic V., Ramachandran S. Foam for gas well deliquification // Colloids Surf. A: Physicochem. Eng. Asp. 2007. V. 309. P. 177-181. https://doi.org/10.1016/j.colsurfa.2006.10.011
  49. Xu X., Saeedi A., Liu K. Laboratory studies on CO2 foam flooding enhanced by a novel amphiphilic ter-polymer // J. Petrol. Sci. Eng. 2015. V. 138. P. 153-159. https://doi.org/10.1016/j.petrol.2015.10.025
  50. Wu G., Zhu Q.Q., Yuan C.T., Wang H.B., Li C.L., Sun S.Q., Hu S.Q. Molecular dynamics simulation of the influence of polyacrylamide on the stability of sodium dodecyl sulfate foam // Chem. Eng. Sci. 2017. V. 166. P. 313-319. https://doi.org/10.1016/j.ces.2017.03.011
  51. Ma J.Z., Gao J.J., Wang H.D., Lyu B., Gao D.G. Dissymmetry Gemini sulfosuccinate surfactant from vegetable oil: A kind of environmentally fatliquoring agent in leather industry // ACS Sustain. Chem. Eng. 2017. V. 5. № 11. P. 10693-10701. https://doi.org/10.1021/acssuschemeng.7b02662
  52. Hassan M., Al-Hazmi S.M., Alhagri I.A., Alhakimi A.N., Dahadha A.A., Al-Dhoun M., Batineh Y. Micellar catalysis of chemical reactions by mixed surfactant systems and Gemini surfactants // Asian J. Chem. 2021. V. 33. № 7. P. 1471-1480. https://doi.org/10.14233/ajchem.2021.23187
  53. Lu H.S., He Y., Huang Z.Y. Synthesis and properties of a series of CO2 switchable Gemini imidazolium surfactants // Tenside Surfact. Det. 2014. V. 51. № 5. P. 415-420. https://doi.org/10.3139/113.110323
  54. Qi H., Bai Z.G., Zhang Q.Z., Lai X.J. Synthesis of a Gemini betaine surfactant and its properties as foam drainage agent // Tenside Surfact. Det. 2018. V. 55. № 2. P. 142-147. https://doi.org/10.3139/113.110551
  55. Worthen A.J., Bryant S.L., Huh C., Johnston K.P. Carbon dioxide-in-water foams stabilized with nanoparticles and surfactant acting in synergy // AIChE J. 2013. V. 59. № 9. P. 3490-3501. https://doi.org/10.1002/aic.14124
  56. Latif W.M.S.M., Sharbini S.N., Wan Sulaiman W.R., Idris A.K. Utilization of silicon dioxide nanoparticles in foam enhanced oil recovery - A comprehensive review // IOP Conf. Series: Materials Science and Engineering. 2019. V. 469. P. 012027. https://doi.org/10.1088/1757-899X/469/1/012027

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах