Application of Coal Tar Products and Evaluation of the Stability of Residual Marine Fuels

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Although the quality of coal tar does not meet the demands for blended marine fuel, the properties of its components after processing are improved, and they can be considered as inexpensive blending components. Three types of coal tar products including light coal tar I, light coal tar II, and hydrogenated coal tar have been obtained and used in production of residual marine fuels. To minimize costs, a linear optimization method has been used, and all properties of the resulting products have met the required criteria. In addition, a novel analytical method was used to characterize the fuel stability. The analysis of a hydrocarbon composition and a mechanism of interaction between the resin and asphaltene have shown the main coal tar components affecting fuel oil stability are polycyclic aromatic hydrocarbons (PAHs) and resin. A condensation of PAHs and resin into asphaltene and an increasing complexity of asphaltene structure causes deposition of oil products under heating. Hydrogenation is able to effectively reduce the PAH content and the volume of formation of massive asphaltenes thus preventing fuel flocculation and deposition during aging in fuel tanks.

Sobre autores

Liu Mingrui

Liaoning Provincial Key Laboratory of Marine Fuel Oil Preparation Technology, Sinopec Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd

Email: liumingrui.fshy@sinopec.com
Dalian, 116045, Liaoning, China

Li Zunzhao

Liaoning Provincial Key Laboratory of Marine Fuel Oil Preparation Technology, Sinopec Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd

Email: petrochem@ips.ac.ru
Dalian, 116045, Liaoning, China

Wang Haibo


Liaoning Branch, Fuel Oil Sales Co., Ltd.

Autor responsável pela correspondência
Email: petrochem@ips.ac.ru
Sinopec, Dalian, 116602, Liaoning, China

Bibliografia

  1. Li D., Li Z., Li W., Liu Q., Feng Z., Fan Z. Hydrotreating of low temperature coal tar to produce clean liquid fuels // J. Anal. Appl. Pyrol. 2013. V. 100. P. 245-252. https://doi.org/10.1016/j.jaap.2013.01.007
  2. Гуляева Л.А., Хавкин В.А., Шмелькова О.И., Виноградова Н.Я., Битиев Г.В., Красильникова Л.А., Юсовский А.В., Никульшин П.А. Получение низкосернистого высоковязкого судового топлива гидропереработкой нефтяных остатков // Химия и технология топлив и масел. 2018. № 6. С. 3-6.
  3. Gulyaeva L.A., Khavkin V.A., Shmel'kova O.I., Vinogradova N.Ya., Bitiev G.V., Krasil'nikova L.A., Yusovskii A.V., Nikul'shin P.A. Production of low-sulfur high-viscosity marine fuel by hydrotreatment of oil residues // Chem. Technol. Fuels. Oils. 2019. V. 54. № 6. P. 669-675. https://doi.org/10.1007/s10553-019-00974-1.
  4. Гуляева Л.А., Лобашова М.М., Митусова Т.Н., Шмелькова О.И., Хавкин В.А., Никульшин П.А. Получение низкосернистого судового топлива // Химия и технология топлив и масел. 2019. № 6. С. 32-36.
  5. Gulvaeva L.A., Khavkin V.A., Shmel'kova O.I., Mitusova T.N. Production technology for low-sulfur high-viscosity marine fuels // Chem. Technol. Fuels. Oils. 2019. V. 54. №. 6. P. 759-765. https://doi.org/10.1007/s10553-019-00984-z.
  6. Vedachalam S., Baquerizo N., Dalai A.K. Review on impacts of low sulfur regulations on marine fuels and compliance options // Fuel. 2022. V. 310. P. 122243. https://doi.org/10.1016/j.fuel.2021.122243
  7. Benajes J., Molina S., García A., Belarte E., Vanvolsem M. An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels // Appl. Therm. Eng. 2014. V. 63. № 1. P. 66-76. https://doi.org/10.1016/j.applthermaleng.2013.10.052
  8. Lv D., Yuchi W., Bai Z., Bai J., Kong L., Guo Z., Yan J., Li W. An approach for utilization of direct coal liquefaction residue: Blending with low-rank coal to prepare slurries for gasification // Fuel. 2015. V. 145. P. 143-150. https://doi.org/10.1016/j.fuel.2014.12.075
  9. Sun X., Liang X., Shu G., Yu H., Liu H. Development of surrogate fuels for heavy fuel oil in marine engine // Energy. 2019. V. 185. P. 961-970. https://doi.org/10.1016/j.energy.2019.07.085
  10. Stratiev D., Shishkova I., Tankov I., Pavlova A. Challenges in characterization of residual oils. A review // J. Petrol. Sci. Eng. 2019. V. 178. P. 227-250. https://doi.org/10.1016/j.petrol.2019.03.026
  11. Sultanbekov R.R., Nazarova M.N. Preserving the quality of petroleum products when mixed in tanks. In: Topical Issues of Rational Use of Natural Resources. Litvinenko V., Ed., CRC Press, 2019. V. 2. P. 914-919. https://doi.org/10.1201/9781003014638-57
  12. Vráblík A., Velvarská R., Štěpánek K., Pšenička M., Hidalgo J. M., Černý R. Rapid models for predicting the low-temperature behavior of diesel // Chem. Eng. Technol. 2019. V. 42. № 4. P. 735-743. https://doi.org/10.1002/ceat.201800549
  13. Zhang Z., Lv J., Li W., Long J., Wang S., Tan D., Yin Z. Performance and emission evaluation of a marine diesel engine fueled with natural gas ignited by biodiesel-diesel blended fuel // Energy. 2022. V. 256. P. 124662. https://doi.org/10.1016/j.energy.2022.124662
  14. Ma Z.-H., Li S., Dong X.-Q., Li M., Liu G.-H., Liu Z.-Q., Liu F.-J., Zong Z.-M., Cong X.-S., Wei X.-Y. Recent advances in characterization technology for value-added utilization of coal tars // Fuel. 2023. V. 334. P. 126637. https://doi.org/10.1016/j.fuel.2022.126637
  15. Chacón-Patiño M.L., Rowland S.M., Rodgers R.P. Advances in asphaltene petroleomics. Part 2: Selective separation method that reveals fractions enriched in island and archipelago structural motifs by mass spectrometry // Energy Fuels. 2018. V. 32. № 1. P. 314-328. https://doi.org/10.1021/acs.energyfuels.7b03281
  16. Sun M., Li Y., Sha S., Gao J., Wang R., Zhang Y., Hao Q., Chen H., Yao Q., Ma X. The composition and structure of n-hexane insoluble-hot benzene soluble fraction and hot benzene insoluble fraction from low temperature coal tar // Fuel. 2020. V. 262. P. 116511. https://doi.org/10.1016/j.fuel.2019.116511
  17. Schuler B., Meyer G., Peña D., Mullins O.C., Gross L. Unraveling the molecular structures of asphaltenes by atomic force microscopy // J. Am. Chem. Soc. 2015. V. 137. № 31. P. 9870-9876. https://doi.org/10.1021/jacs.5b04056
  18. Чернышева Е.А., Пискунов И.В., Капустин В.М. Повышение эффективности процесса перегонки нефти на НПЗ путем предварительного оптимального смешения сырья (обзор). 2021. Т. 60. № 1. С. 3-20. https://doi.org/10.31857/S0028242120010050
  19. Chernysheva E.A., Piskunov I.V., Kapustin V.M. Enhancing the efficiency of refinery crude oil distillation process by optimized preliminary feedstock blending (review) // Petrol. Chemistry. 2020. V. 60. № 1. P. 1-15. https://doi.org/10.1134/S0965544120010053.
  20. Liu M., Xiang X., Zhang H., Xue Q. Study on stability of heavy marine fuel oil via gradient viscosity method // Pet. Process. Petrochem. 2015. V. 46. P. 96-100. https://doi.org/10.3969/j.issn.1005-2399.2015.11.020
  21. Smyshlyaeva K.I., Rudko V.A., Kuzmin K.A., Povarov V.G. Asphaltene genesis influence on the low-sulfur residual marine fuel sedimentation stability // Fuel. 2022. V. 328. P. 125291. https://doi.org/10.1016/j.fuel.2022.125291
  22. Guzmán R., Ancheyta J., Trejo F., Rodríguez S. Methods for determining asphaltene stability in crude oils // Fuel. 2017. V. 188. P. 530-543. https://doi.org/10.1016/j.fuel.2016.10.012
  23. Abdellatief T.M.M., Ershov M.A., Kapustin V.M., Ali Abdelkareem M., Kamil M., Olabi A.G. Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: A systematic review // Fuel. 2021. V. 291. P. 120112. https://doi.org/10.1016/j.fuel.2020.120112
  24. Chambrion P., Bertau R., Ehrburger P. Effect of polar components on the physico-chemical properties of coal tar // Fuel. 1995. V. 74. № 9. P. 1284-1290. https://doi.org/10.1016/0016-2361(95)00096-N
  25. Jin L., Cao Q., Li J., Dong J. Sulfur removal in coal tar pitch by oxidation with hydrogen peroxide catalyzed by trichloroacetic acid and ultrasonic waves // Fuel. 2011. V. 90. № 11. P. 3456-3460. https://doi.org/10.1016/j.fuel.2011.06.047
  26. Han X., Kulaots I., Jiang X., Suuberg E.M. Review of oil shale semicoke and its combustion utilization // Fuel. 2014. V. 126. P. 143-161. https://doi.org/10.1016/j.fuel.2014.02.045
  27. Avci M., Yazici M.Y. Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit // Energ. Convers. Manage. 2013. V. 73. P. 271-277. https://doi.org/10.1016/j.enconman.2013.04.030
  28. Глаголева О.Ф., Капустин В.М., Пискунов И.В., Усманов М.Р. Регулирование агрегативной устойчивости сырьевых смесей и товарных нефтепродуктов (обзор) // Нефтехимия. 2020. Т. 60. № 5. С. 577-586. https://doi.org/10.31857/S002824212005010X
  29. Glagoleva O.F., Kapustin V.M., Piskunov I.V., Usmanov M.R. Controlling the aggregative stability of feedstock blends and petroleum products // Petrol. Chemistry. 2020. V. 60. № 9. P. 971-978. https://doi.org/10.1134/S0965544120090108.
  30. Santos Silva H., Alfarra A., Vallverdu G., Bégué D., Bouyssiere B., Baraille I. Asphaltene aggregation studied by molecular dynamics simulations: role of the molecular architecture and solvents on the supramolecular or colloidal behavior // Pet. Sci. 2019. V. 16. № 3. P. 669-684. https://doi.org/10.1007/s12182-019-0321-y
  31. Deng M., Cao X., Tang B., Yuan Y. Revealing self-aggregation mechanism of asphaltenes during oxidative aging using quantum mechanical calculations // J. Mol. Liq. 2023. V. 371. P. 121063. https://doi.org/10.1016/j.molliq.2022.121063
  32. Pereira J.C., López I., Salas R., Silva F., Fernández C., Urbina C., López J.C. Resins: the molecules responsible for the stability/instability phenomena of asphaltenes // Energy Fuels. 2007. V. 21. № 3. P. 1317-1321. https://doi.org/10.1021/ef0603333
  33. Stratiev D., Shishkova I., Nedelchev A., Kirilov K., Nikolaychuk E., Ivanov A., Sharafutdinov I., Veli A., Mitkova M., Tsaneva T. Investigation of relationships between petroleum properties and their impact on crude oil compatibility // Energy Fuels. 2015. V. 29. № 12. P. 7836-7854. https://doi.org/10.1021/acs.energyfuels.5b01822
  34. Ali S.I., Awan Z., Lalji S.M. Laboratory evaluation experimental techniques of asphaltene precipitation and deposition controlling chemical additives // Fuel. 2022. V. 310. P. 122194. https://doi.org/10.1016/j.fuel.2021.122194
  35. Stratiev D., Shishkova I., Dinkov R., Nikolova R., Mitkova M., Stanulov K., Sharpe R., Russell C. A., Obryvalina A., Telyashev R. Reactivity and stability of vacuum residual oils in their thermal conversion // Fuel. 2014. V. 123. P. 133-142. https://doi.org/10.1016/j.fuel.2014.01.043
  36. Li S., Liu C., Que G., Liang W. Colloidal structures of vacuum residua and their thermal stability in terms of saturate, aromatic, resin and asphaltene composition // J. Petrol. Sci. Eng. 1999. V. 22. № 1-3. P. 37-45. https://doi.org/10.1016/S0920-4105(98)00055-2
  37. Hauser A., Bahzad D., Stanislaus A., Behbahani M. Thermogravimetric analysis studies on the thermal stability of asphaltenes: Pyrolysis behavior of heavy oil asphaltenes // Energy Fuels. 2008. V. 22. № 1. P. 449-454. https://doi.org/10.1021/ef700477a

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies